
Distributed
 Computing

HS 2020 Prof. R. Wattenhofer
Devillez Henri

Computational Thinking

Exercise 11

1 Limitations of Neural Networks

Which of the following functions can theoretically be approximated arbitrarily well by a sufficiently
large neural network?

a) f(x) = x2 for x ∈ [0, 1]

b) f(x) = |x| for x ∈ [−1, 1]

c) x ∈ [0, 100] and f(x) =

{
1 for x ∈ N
0 else

d) x ∈ [−10, 10] and f(x) =

{
3x4 + 5x for x > 0

−3x3 + 7x2 else

e) x ∈ [−10, 10] and f(x) =

{
4x3 + 7x+ 2 for x > 0

−3x3 + 8x else

2 VC Dimension

What is the VC Dimension of a linear logistic regression binary classifier that takes two scalar
input features? Hint: It might help to revisit the XOR example from Exercise 10.

3 An Ill-Designed Network

x
a = 100 b = 1

f̂(x|a, b) = b · tanh(a · x)

Figure 1: A simple neural network

Figure 1 shows a simple neural network with a single hidden node that applies the hyperbolic

tangent non-linearity tanh(ax) = exp(ax)−exp(−ax)
exp(ax)+exp(−ax) . You want to train the network with stochastic

gradient descent to approximate the identity function f(x) = x for inputs x ∈ [−1, 1].

a) Given the weights a and b as in the figure, calculate the output f̂(x|a, b) for the input x = 0.9

b) Calculate the numerical gradient of the MSE regression loss L = 1
2 (f(x) − f̂(x|a, b))2 with

respect to b with your result from before, i.e., for x = 0.9.

c) Calculate the numerical gradient of the same loss with respect to the parameter a.
Hint: The derivative of the hyperbolic tangent is given by d

dz tanh(z) = 1− tanh2(z)

d) Given a learning rate α = 0.1, update the parameters with the calculated gradients. What
issue do you see?

e) If you instead start with a = 1 and b = 100, what issue will arise?

Bonus Can you give a parametarization that would give a decent approximation?

4 Gradient Descent with Momentum

x

L

w

xx

Figure 2: Loss surface and initialization point of a parameter within a neural network.

Gradient descent presents some difficulties, such as setting an appropriate learning rate. Here
we introduce a heuristic that helps to overcome some of these difficulties: Momentum. Recall that
in gradient descent the update of a parameter w is w := w − α · gw where we abbreviated the
gradient as gw = ∂

∂wL(f̂ , D). Gradient descent with momentum stores an auxiliary variable mw

for each parameter w and updates the parameters in two steps: First, the momentum parameter is
updated as mw := β ·mw + (1−β) · gw, where β ∈ [0, 1) is an additional hyperparameter. Second,
the model parameter is updated as w := w − α ·mw.

a) For which value of β is gradient descent with momentum equivalent to standard gradient
descent?

b) Figure 2 shows the loss of a neural network with respect to a single parameter w of the
network. We first look at the green x’s. The dark green x marks the initial value of the
parameter w, the light green x marks its value after a first gradient descent step. Roughly
mark in the figure where the next update will end up if we were to follow normal gradient
decent.

c) Now what if we use momentum? Roughly mark in the figure where the next update will end
up if we follow gradient decent with momentum for β = 0.99

d) Next we look at the blue x, which marks the initial value of the parameter in another run.
Mark in the figure, where gradient descent on w with a sufficiently small learning rate α will
end up on this loss surface (after several updates).

e) What might happen in the case of gradient descent with momentum for the initial value
marked by the blue x?

2

	Limitations of Neural Networks
	VC Dimension
	An Ill-Designed Network
	Gradient Descent with Momentum

