e
ETH o

]
istri 5 gu®
Eidgendssische Technische Hochschule Ziirich DISt”bUteq ‘:“‘\““ i
Swiss Federal Institute of Technology Zurich ComPUt’ng (LS B
Autumn Term 2018 Prof. R. Wattenhofer

Distributed Systems

Exam
Monday, 21st January 2019, 09:00 - 10:30

Do not open or turn before the exam starts!
Read the following instructions!

The maximum points for all tasks and subtasks are indicated in brackets. Justify
all your answers except if the task explicitly relieves you of it. Mark drawings
precisely. Answers which we cannot read are not awarded any points!

At the beginning, fill in your name and student number in the corresponding fields
below. Label each extra sheet with your name and student number, too.

Family Name First Name Student Number

Task Achieved Points | Maximum Points
1 - Multiple Choice 8

2 - Binary Value Broadcast 28

3 - Localization 29

4 - Blockchain 14

5 - Selfish Caching with a Byzantine 18

Total 90

1 Multiple Choice (8 points)

For each statement, indicate whether it is true or false. Each correct answer gives 1 point. Wrong
(or double) answers and unanswered statements give 0 points. In this task, you cannot justify
your answers.

Statement true false

Paxos would still be correct if clients require an answer from 70% of
the servers instead of a simple majority.

Assume that the initial configuration Cj is bivalent and there are
f < n/2 crash failures. The Ben-Or algorithm will visit precisely one 0 O
(not more, not less) critical configuration during its execution.

Let f < n/3. Then, any byzantine agreement algorithm that satisfies

Median Validity also satisfies All-Same validity. - =
A shared coin always yields the same output for all nodes. a O
At any given time during the PBFT protocol, only a single correct
. . . O O

node considers itself to be primary.
In the PBFT protocol, the requests contained in the new-view-

. O O
certificate were already executed by every correct node.
When using consistent hashing, with high probability no machine . -

must store too many movies.

Happened-before consistency is composable. a O

Statement

true false

Paxos would still be correct if clients require an answer from 70%
of the servers instead of a simple majority.
Reason: Yes, any fraction of servers above 1/2 guarantees that two
different commands cannot be accepted simultaneously.

v

Assume that the initial configuration Cj is bivalent and there are
f < n/2 crash failures. The Ben-Or algorithm will visit precisely one
(not more, not less) critical configuration during its execution.
Reason: For f < n/2 crash failures, the Ben-Or algorithm solves
consensus (Theorem 11.20). By Lemma 11.12, we are guaranteed to
reach a critical configuration C' within finite time. Let C' be the first
critical configuration that the Ben-Or algorithm passes. All children
of C'in the configuration tree are univalent and thus the entire subtree
rooted in C' consists of univalent configuration (except for C'). Hence,
none of the reachable configurations are bivalent and thus none of
them are critical.

Let f < n/3. Then, any byzantine agreement algorithm that satis-
fies Median Validity also satisfies All-Same validity.
Reason: Assume that all n— f correct nodes have the same input value.
Then, byzantine values can either be the same, larger or smaller. In
any case, the median will be one of the correct values, and the median
condition implies that it should be taken.

A shared coin always yields the same ‘output for all nodes.
Reason: A shared coin is a random variable that is 0 for all nodes with
constant probability, and 1 for all nodes with constant probability. No
requirement for these two probabilities to add up to 1.

At any given time during the PBFT protocol, only a single correct
node considers itself to be primary.
Reason: If the node with id v mod n is in view v and the node with
id (v+1) mod n is in view v + 1, then both consider themselves to
be primary.

In the PBFT protocol, the requests contained in the new-view-
certificate were already executed by every correct node.
Reason: It could contain prepared-certificate of the requests that did
not have time to commit before the view change occurred.

When using consistent hashing, with high probability no machine
must store too many movies.
Reason: The Chernoff bound in the script gives a bound with high
probability.

Happened-before consistency is composable.
Reason: Happened-before consistency = sequential consistency, and
sequential consistency is not composable (Lemma 13.17).

v
v
v
v
v
v
v

2 Binary Value Broadcast (28 points)

Consider a distributed system with n nodes, f < n/3 of which can be byzantine. Assume that
each node has a binary input value and the nodes communicate via a synchronous network.
Algorithm 1 presents a possible broadcast abstraction which the nodes can use to communicate
their inputs. This abstraction is similar to reliable broadcast. However, instead of forwarding
messages, the nodes forward single values:

Algorithm 1 Synchronous Binary Value Broadcast (code for node u)
x, € {0,1} < input bit

Round 1:
1: Broadcast own message msg(u,)

Round 2:

if at least f 4+ 1 messages msg(v, x,) contain the same bit x, then
Broadcast echo(u,)

end if

if at least 2f 4+ 1 messages echo(w, x,,) contain the same bit x,, then
Accept(zy,)

end if

For f < n/3 byzantine nodes, show that ...

a) [5] ... if a correct node has not broadcast a value, this value will not be accepted by any
correct node.

b) (6] ... each correct node will accept at least one value.

c) [5] ... if one correct node has accepted ezactly one bit x, no other correct node will accept
only the opposite bit 1 — x.

Algorithm 2 presents a randomized algorithm for synchronous byzantine agreement, similar to
Ben-Or. This algorithm makes use of a shared coin subroutine as a blackbox, which is assumed
to be computationally efficient in this case. Unfortunately, some lines of the algorithm have been
erased.

Algorithm 2 Synchronous Byzantine Agreement (Ben-Or)
x,, € {0,1} < input bit
r =1 round

1: decided = false
2: repeat
3: Binary Value Broadcast msg(u, z,,) (according to Algorithm 1)

4: Let X, be the set of accepted bits

5: Broadcast X,

6: Let ¢ be the outcome of a shared coin subroutine
7 [Erased lines]

8: r=r+1

9: until decided (Erased part)
10: decision = x,

d) 1127 Suggest a replacement for the missing lines in Algorithm 2, such that the resulting
algorithm satisfies termination, agreement and all-same validity. Note that no additional
communication rounds are required.

[more space for d)]

a)

b)

d)

Since byzantine nodes can only echo the same value f times, no correct node will be able
to echo a value that is not from a correct node. There will be at most f echoes for a
non-correct value and therefore no correct node will accept such a value.

Since n > 3f, there are at least 2f + 1 correct nodes in the system. One of the values
0/1 will be held by a majority of the nodes, i.e. by at least f + 1 correct nodes. Since all
correct nodes will receive the correct f + 1 values, they will echo them. Since there are at
least 2f 4+ 1 correct nodes, all nodes will accept the value.

Let 0 be the only bit that the node accepted. If less than f+ 1 correct nodes echoed 0, then
1 was the value that was held by the majority of the correct nodes, which is a contradiction
to 0 being the only accepted value. Since at least f 4+ 1 nodes had 0 as the input value, all
correct nodes will echo 0 and thus every correct node will accept it.

The full algorithm is presented below. The nodes decide by entering the loop in Line 7.
If there are n — f sets which contain exactly one value, each correct node will receive at
least n — 2f > f + 1 correct sets with exactly one value. This means that no correct node
will find the opposite bit inside n — f sets. Moreover, since at least one correct node has
accepted only this value, it will be inside all correct sets according to task b). This gives
agreement. The algorithm will terminate, because with constant probability the shared
coin will have the same value as the value which some correct nodes have adapted. If all
nodes have the same input, all n — f correct sets will contain only this input and the nodes
will decide in Line 7 of the algorithm. Sinece Binary Value Broadcast can tolerate f < n/3
byzantine nodes and all previous analysis only requires f and n to satisfy n —2f > f+ 1,
the algorithm can tolerate f < n/3 byzantine nodes.

Algorithm 3 Synchronous Byzantine Agreement

z, € {0,1} < input bit
r = 1 round

1: decided = false

2: repeat

3: Binary Value Broadcast msg(xy, r) (according to Algorithm 1)

4: Let X, be the set of accepted bits

5: Broadcast X,

6: Let ¢ be the outcome of a shared coin subroutine

7: if n — f sets X, each only contain the value x then

8: Xy = x, decided = true

9: else if n — f sets X, contain the bit z, but no n — f sets contain the opposite bit of x
then

10: Ty =T

11: else

12: Ty — C

13: end if

14: r=r-+1

15: until decided (Erased part)
16: decision = x,,

3 Localization (22 points)

In this task, we look at a system using audio speaker signals for localization similar to GPS.
All speakers and a receiver are located on a line and the receiver wants to position itself on this
line. Assume that the signal propagation speed is ¢ = % m/s = % m/ms.
a) [8] Given the speaker signals below, which were all received at handset time t=0, write
down the system of equations for computing the receiver’s position h and its time offset 6

to the system time.

Label ‘ Sent from position ‘ Sent at system time

A 1m -11 ms
B 3m -11 ms
C 5 m 1 ms

b) 18] Consider the two potential receiver states (h =4 m, § =-1ms) and (h =4 m, 0 =
1 ms). Compute the sum of the squared residuals (in ms?).

Which of the states of more likely, in the least squares sense?

h=14

f=—1ms
6 =1ms

c) [6] Assuming that one signal is spoofed, which one must it be? You can use the knowledge
that the true receiver location is h = 6.

b)

|l m—h|/c=11ms—0
|I3m —h|/c=11 ms—0
|5m—h|/c=—-1ms—¥0

+60 works as well, but will flip the result in b).

Egh=40=1:r4=|1m—4m|/(1/3) m/ms — 11 ms+ 1 ms = —1 ms.
R:ri—l—r%—i—r%—i—r%

h=4
0=1ms | 1+494+25=75
f=—-1ms| 94+81+9=99

The more likely receiver state among the options is therefore (h = 4 m,6 = 1 ms).

Generally, the signal which leads to a perfect solution (residual error = 0) if it is excluded
from the system of equations. Since the receiver position is known, it must the signal whose
computed time offset does not agree with any of the other two. By simplifying the system
of equations, we get:

4ms+60=0
—2ms+6=0
4ms+60=0

With # = —4 ms, the residuals for both A and C are zero. So, the signal from B must
be the spoofed one. (The receiver stateis (h = 6 m,f# = —4 ms), which means that the
receiver time is behind the true time.)

4 Blockchain (14 points)

In this task, we look at a hypothetical segment of the Bitcoin blockchain. A transaction is
represented as (T1: in-ol, out-02, 10btc to B), which means:

e Transaction input is ol

e Transaction output is 02, whose value is 10btc, and can be spent by B

Block: B1
Transactions: [(T1: in-01 , out-02, 10btc to B,
out-03, 5bic to C)

Block: B2 Block: B2
Transactions: [(TZ: in-0Z, out-o4, Bbtc to C Transactions: [(T4: in-02, out-07, 10btc to B))
, out-o05, 2bic to B),]
{T3: in-03, out-08, Sbic to D))
Block: B4
Transactions: [(T5: in=07, out-08, 10bic to E))
i
. Block: BS

. Transactions: [(T8: in-08, out-09, 10btc to F))

a) [5] A Bitcoin node starts up from scratch, and syncs itself till (and including validating)
block B4. Which of the numbered outputs from the set {out-ol, ..., out-09} make it in
and/or out of the UTXO set during this syncing process? Check the correct cells in the
following table — no justification needed.

output | in out
out-ol

out-o2
out-o3
out-o4
out-0d
out-o6

out-o7

out-o8

out-09

b) (31 Merchant D got paid 5btc in transaction T3 by C, which ended up in block B2. Should
D deliver the goods now?

c) [3] Do any participants look like they are cheating? If so, which?

d) 131 Give a technical explanation for why Satoshi Nakamoto might have included the
headline “The Times 03/Jan/2009 Chancellor on brink of second bailout for banks” in the
coinbase transaction of the genesis block of Bitcoin?

b)

d)

output | in out
out-ol X
out-02 X X
out-o3 X

out-o4

out-05

out-o6

out-o7 X X
out-o8 X

out-09

No, D should not deliver anything to B yet. T3 is currently mined in B2; which is an orphan
block. D could either wait for the T3 to get confirmed in a block that has 6 confirmations.
But given that T3 has missed 2 blocks already, D should ask C to bump up the fees and
rebroadcast a new transaction.

B could possibly be malicious, as it is attempting a double spending transaction spending
02 in both T2 and T4.

Including a time-specific headline proves that the genesis block was mined after 20090103.
Without such an external time marker, the genesis block could have been created earlier,
allowing the existence of an entire alternate blockchain with precomputed proof-of-work.
Such a blockchain could be used by Satoshi to make a double-spending attack in tandem
with the main public blockchain which uses the same (bad) genesis block.

5 Selfish Caching with a Byzantine (18 points)

Recall the selfish caching game on graphs, where the cost of node v is 1 if v caches the file, and
Co,u - dy otherwise, where d, is the demand of v and ¢, 4 is the shortest path length to a caching
node. In the lecture, we have seen that selfish behavior can lead to a higher total cost than the
Social Optimum.

We now investigate an even worse scenario: Assume that there is exactly one byzantine node
who deliberately tries to increase the total cost. However, its only power is to not have to play
rationally, i.e. it can decide to cache or not cache freely. All other nodes still act selfishly.

a) [8] Assume that the byzantine node does not cache the file. Find demands in the following
graph and place the byzantine node such that the cost of the NE with the byzantine node
is higher than in any NE with only selfish nodes.

b) [10] Assume that the byzantine node does cache the file. Find demands in the following
graph and place the byzantine node such that the cost of the NE with the byzantine node
is higher than in any NE with only selfish nodes.

a)

b)

With the labels chosen as below, only the central node would be cashing in the NE, thus
resulting in a weight of 2-0.9 + 1 = 2.8. However, if the central node is byzantine and
decides not to cash, the total cost results in 2-1+4 1.1 = 3.1.

(Various other correct solutions exist. Note: if the byzantine NE is worse than at least one
selfish NE in the graph, but not worse than every selfish NE, then at most 5 points can
be given.)

With the labels chosen as below, the rightmost node would always cash in the NE. The-
refore, its neighbor with demand 0.9 will never cash, and that nodes neighbor will have to
cash again, since its distance from any cashing node would be more than 1. This results
in a weight of 14+ 1+3-0.9 =4.7.

On the other hand, let us choose the second node from the right as the byzantine. If this
node cashes, its left neighbor does not have to cash anymore. The two nodes on the left
are this way forced to cash. This results in a weight of 4 -1 + 0.9 = 4.9, which is larger
than the cost of the NE.

(Again, there are numerous other correct solutions. If the byzantine NE is worse than at
least one selfish NE in the graph, but not worse than every selfish NE, then at most 5
points can be given.)

