
ETH Zürich (D-ITET)

Laurent Vanbever

19 September 2019

nsg.ee.ethz.ch

Automata & languages

A primer on the Theory of Computation
The imitation game (2014)

Benedict Cumberbatch Alan Turing (1912-1954)

Alan Turing (1912-1954)

created computer science
as we know it

invented a universal computer

model, the Turing machine

broke German cyphers,  
most notably Enigma

invented the Turing Test

to distinguish human from machine

Brief CV

studied the fundamental

limitations of computers

invented a universal computer

model, the Turing machine

Can a computer compute anything?

Given an arbitrary

program P & an input I

Halting problem

Alan Turing, 1936

Decide whether P will

halt, eventually

loop, forever

when run on I

This problem cannot be solved

by a computer (no matter its power)

Many other problems were shown
to be “uncomputable”

https://en.wikipedia.org/wiki/List_of_undecidable_problems

b

ca

a

ab

ca

a

abc

c

Given a set of dominos:

Make a list of them s.t.

the top string equals

the bottom one, e.g.

abc

c

a

ab

b

ca

ca

a

a

ab

(repetitions
are allowed)

Post-correspondance

problem
Emil Post, 1946

In this part of the course,
we’ll learn about what is “computable” and “not”

regular
language

context-free
language

turing
machine

Part 1

Part 2

Part 3

vendor
machines

programming
languages

computer

We’ll study three models of computation,
from the least powerful to the most

expressive
power

regular
language

context-free
language

turing
machine

Part 1

Part 2

Part 3

Automata & languages

A primer on the Theory of Computation

regular
language

context-free
language

turing
machine

Part 1

Automata & languages

A primer on the Theory of Computation

Definition

Finite Automata

Part I: Regular Languages

Design

Examples

Regular operations

closure

union et al.

1

2

3

4

Thu 19 Sept

The Coke Vending Machine

• Vending machine dispenses soda for $0.45 a pop.

• Accepts only dimes ($0.10) and quarters ($0.25).

• Eats your money if you don’t have correct change.

• You’re told to “implement” this functionality.

1/1

Vending Machine Java Code

Soda vend(){
int total = 0, coin;
while (total != 45){

receive(coin);
if ((coin==10 && total==40)
||(coin==25 && total>=25))

reject(coin);
else

total += coin;
}
return new Soda();

}

1/2

Overkill?!?

1/3

Why this was overkill…

• Vending machines have been around long before computers.

– Or Java, for that matter.

• Don’t really need int’s.

– Each int introduces 2
32

possibilities.

• Don’t need to know how to add integers to model vending machine
– total += coin.

• Java grammar, if-then-else, etc. complicate the essence.

1/4

Vending Machine “Logics”

1/5

Why was this simpler than Java Code?

• Only needed two coin types “D” and “Q”
– symbols/letters in alphabet

• Only needed 7 possible current total amounts

– states/nodes/vertices

• Much cleaner and more aesthetically pleasing than Java lingo

• Next: generalize and abstract…

1/6

Alphabets and Strings

• Definitions:

• An alphabet 6 is a set of symbols (characters, letters).

• A string (or word) over 6 is a sequence of symbols.

– The empty string is the string containing no symbols at all, and is denoted by

H.

– The length of the string is the number of symbols, e.g. |H| = 0.

1/7

Questions:

1) What is 6?

2) What are some good or bad strings?

3) What does H signify here?

1/9

Finite Automaton Example

0

1

0

1

1 1 0 0 1

01

sourceless

arrow

denotes

“start”

double

circle

denotes

“accept”

input put

on tape

read left

to right

What strings are “accepted”?

1/10

Formal Definition of a Finite Automaton

A finite automaton (FA) is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹),where

• Q is a finite set called the states

• 6 is a finite set called the alphabet

• 𝛿: 𝑄 × Σ → 𝑄 is the transformation function

• 𝑞0 ∈ 𝑄 is the start state

• 𝐹 ⊆ 𝑄 is the set of accept states (a.k.a. final states).

1/11

Formal Definition of a Finite Automaton

A finite automaton (FA) is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹),where

• Q is a finite set called the states

• 6 is a finite set called the alphabet

• 𝛿: 𝑄 × Σ → 𝑄 is the transformation function

• 𝑞0 ∈ 𝑄 is the start state

• 𝐹 ⊆ 𝑄 is the set of accept states (a.k.a. final states).

• The “input string” and the tape containing it are implicit in the definition.
The definition only deals with the static view.

Further explaining is needed for understanding how FA’s interact with
their input.

1/12

Accept States

• How does an FA operate on strings?

Imagine an auxiliary tape containing the string.

The FA reads the tape from left to right with each new character

causing the FA to go into another state.

When the string is completely read, the string is accepted

depending on whether the FA’s final state was an accept state.

1/13

Accept States

• How does an FA operate on strings?

Imagine an auxiliary tape containing the string.

The FA reads the tape from left to right with each new character

causing the FA to go into another state.

When the string is completely read, the string is accepted

depending on whether the FA’s final state was an accept state.

• Definition: A string u is accepted by an automaton M iff (if and only if)
the path starting at q

0
which is labeled by u ends in an accept state.

1/14

Accept States

• How does an FA operate on strings?

Imagine an auxiliary tape containing the string.

The FA reads the tape from left to right with each new character

causing the FA to go into another state.

When the string is completely read, the string is accepted

depending on whether the FA’s final state was an accept state.

• Definition: A string u is accepted by an automaton M iff (if and only if)
the path starting at q

0
which is labeled by u ends in an accept state.

• This definition is somewhat informal. To really define what it means for a

string to label a path, you need to break u up into its sequence of

characters and apply d repeatedly, keeping track of states.

1/15

Language

• Definition:

The language accepted by an finite automaton M is the set of all strings

which are accepted by M. The language is denoted by L(M).

We also say that M recognizes L(M), or that M accepts L(M).

• Think of all the possible ways of getting from the start to any accept state.

1/16

Language

• Definition:

The language accepted by an finite automaton M is the set of all strings

which are accepted by M. The language is denoted by L(M).

We also say that M recognizes L(M), or that M accepts L(M).

• Think of all the possible ways of getting from the start to any accept state.

• We will eventually see that not all languages can be described as the

accepted language of some FA.

• A language L is called a regular language if there exists a FA M that

recognizes the language L.

1/17

Designing Finite Automata

• This is essentially a creative process…

• “You are the automaton” method
– Given a language (for which we must design an automaton).

– Pretending to be automaton, you receive an input string.

– You get to see the symbols in the string one by one.

– After each symbol you must determine whether string

seen so far is part of the language.

– Like an automaton, you don’t see the end of the string,
so you must always be ready to answer right away.

• Main point: What is crucial, what defines the language?!

1/18

Find the automata for…

1) 6 = {0,1},

Language consists of all strings with odd number of ones.

2) 6 = {0,1},

Language consists of all strings with substring “001”,
for example 100101, but not 1010110101.

More examples in the book and in the exercises…

1/19

Definition of Regular Language

• Recall the definition of a regular language:

A language L is called a regular language if there exists

a FA M that recognizes the language L.

• We would like to understand what types of languages are regular.

Languages of this type are amenable to super-fast recognition.

1/20

Definition of Regular Language

• Recall the definition of a regular language:

A language L is called a regular language if there exists

a FA M that recognizes the language L.

• We would like to understand what types of languages are regular.

Languages of this type are amenable to super-fast recognition.

• Are the following languages regular?

– Unary prime numbers: { 11, 111, 11111, 1111111, 11111111111, … }
= {1

2
, 1

3
, 1

5
, 1

7
, 1

11
, 1

13, … } = { 1p
| p is a prime number }

– Palindromic bit strings: {H, 0, 1, 00, 11, 000, 010, 101, 111, …}

1/21

Finite Languages

• All the previous examples had the following property in common:

infinite cardinality

• Before looking at infinite languages, we should look at finite languages.

1/22

Finite Languages

• All the previous examples had the following property in common:

infinite cardinality

• Before looking at infinite languages, we should look at finite languages.

• Question:

Is the singleton language containing one string regular?

For example, is the language {banana} regular?

1/23

Languages of Cardinality 1

• Answer: Yes.

1/24

Languages of Cardinality 1

• Answer: Yes.

• Question: Huh? What’s wrong with this automaton?!?
What if the automation is in state q

1
and reads a “b”?

1/25

Languages of Cardinality 1

• Answer: Yes.

• Question: Huh? What’s wrong with this automaton?!?
What if the automation is in state q

1
and reads a “b”?

• Answer:

This a first example of a nondeterministic FA. The difference between a

deterministic FA (DFA) and a nondeterministic FA (NFA) is that every DFA

state has one exiting transition arrow for each symbol of the alphabet.

1/26

Languages of Cardinality 1

• Answer: Yes.

• Question: Huh? What’s wrong with this automaton?!?
What if the automation is in state q

1
and reads a “b”?

• Answer:

This a first example of a nondeterministic FA. The difference between a

deterministic FA (DFA) and a nondeterministic FA (NFA) is that every DFA

state has one exiting transition arrow for each symbol of the alphabet.

• Question: Is there a way of fixing it and making it deterministic?

1/28

Arbitrary Finite Number of Finite Strings

• Theorem: All finite languages are regular.

1/29

Arbitrary Finite Number of Finite Strings

• Theorem: All finite languages are regular.

• Proof:

One can always construct a tree whose leaves are word-ending.

Make word endings into accept states, add a fail sink-state and

add links to the fail state to finish the construction.

Since there’s only a finite number of finite strings,
the automaton is finite.

1/30

Arbitrary Finite Number of Finite Strings

• Theorem: All finite languages are regular.

• Proof:

One can always construct a tree whose leaves are word-ending.

Make word endings into accept states, add a fail sink-state and

add links to the fail state to finish the construction.

Since there’s only a finite number of finite strings,
the automaton is finite.

• Example for {banana, nab, ban, babba}:

b
a a

b

a

n b

a

n

b

a
n

1/35

Regular Operations

• You may have come across the regular operations when doing advanced

searches utilizing programs such as emacs, egrep, perl, python, etc.

• There are four basic operations we will work with:

– Union

– Concatenation

– Kleene-Star

– Kleene-Plus (which can be defined using the other three)

1/36

Regular Operations – Summarizing Table

Operation Symbol UNIX version Meaning

Union ∪ | Match one of the
patterns

Concatenation x implicit in UNIX Match patterns in
sequence

Kleene-star * * Match pattern 0 or
more times

Kleene-plus + + Match pattern 1 or
more times

1/37

Regular Operations matters!

1/38

Regular operations: Union

• In UNIX, to search for all lines containing vowels in a text one could use

the command

– egrep -i `a|e|i|o|u’
– Here the pattern “vowel” is matched by any line containing a vowel.
– A good way to define a pattern is as a set of strings, i.e. a language.

The language for a given pattern is the set of all strings satisfying the

predicate of the pattern.

1/39

Regular operations: Union

• In UNIX, to search for all lines containing vowels in a text one could use

the command

– egrep -i `a|e|i|o|u’
– Here the pattern “vowel” is matched by any line containing a vowel.
– A good way to define a pattern is as a set of strings, i.e. a language.

The language for a given pattern is the set of all strings satisfying the

predicate of the pattern.

• In UNIX, a pattern is implicitly assumed to occur as a substring of the

matched strings. In our course, however, a pattern needs to specify

the whole string, not just a substring.

1/40

Regular operations: Union

• In UNIX, to search for all lines containing vowels in a text one could use

the command

– egrep -i `a|e|i|o|u’
– Here the pattern “vowel” is matched by any line containing a vowel.
– A good way to define a pattern is as a set of strings, i.e. a language.

The language for a given pattern is the set of all strings satisfying the

predicate of the pattern.

• In UNIX, a pattern is implicitly assumed to occur as a substring of the

matched strings. In our course, however, a pattern needs to specify

the whole string, not just a substring.

• Computability: Union is exactly what we expect.

If you have patterns A = {aardvark}, B = {bobcat}, C = {chimpanzee},

the union of these is A�B �C = {aardvark, bobcat, chimpanzee}.

1/41

Regular operations: Concatenation

• To search for all consecutive double occurrences of vowels, use:

– egrep -i `(a|e|i|o|u)(a|e|i|o|u)’
– Here the pattern “vowel” has been repeated. Parentheses have been

introduced to specify where exactly in the pattern the concatenation is

occurring.

1/42

Regular operations: Concatenation

• To search for all consecutive double occurrences of vowels, use:

– egrep -i `(a|e|i|o|u)(a|e|i|o|u)’
– Here the pattern “vowel” has been repeated. Parentheses have been

introduced to specify where exactly in the pattern the concatenation is

occurring.

• Computability: Consider the previous result:

L = {aardvark, bobcat, chimpanzee}.

When we concatenate L with itself we obtain:

LxL = {aardvark, bobcat, chimpanzee} x{aardvark, bobcat, chimpanzee} =

{aardvarkaardvark, aardvarkbobcat, aardvarkchimpanzee,

bobcataardvark, bobcatbobcat, bobcatchimpanzee,

chimpanzeeaardvark, chimpanzeebobcat, chimpanzeechimpanzee}

1/43

Regular operations: Kleene-*

• We continue the UNIX example: now search for lines consisting purely of

vowels (including the empty line):

– egrep -i `^(a|e|i|o|u)*$’
– Note: ^ and $ are special symbols in UNIX regular expressions which

respectively anchor the pattern at the beginning and end of a line.

The trick above can be used to convert any Computability regular

expression into an equivalent UNIX form.

1/44

Regular operations: Kleene-*

• We continue the UNIX example: now search for lines consisting purely of

vowels (including the empty line):

– egrep -i `^(a|e|i|o|u)*$’
– Note: ^ and $ are special symbols in UNIX regular expressions which

respectively anchor the pattern at the beginning and end of a line.

The trick above can be used to convert any Computability regular

expression into an equivalent UNIX form.

• Computability: Suppose we have a language B = {ba, na}.

Question: What is the language B*?

1/45

Regular operations: Kleene-*

• We continue the UNIX example: now search for lines consisting purely of

vowels (including the empty line):

– egrep -i `^(a|e|i|o|u)*$’
– Note: ^ and $ are special symbols in UNIX regular expressions which

respectively anchor the pattern at the beginning and end of a line.

The trick above can be used to convert any Computability regular

expression into an equivalent UNIX form.

• Computability: Suppose we have a language B = {ba, na}.

Question: What is the language B*?

• Answer: B * = { ba,na }* = {H, ba, na, baba, bana, naba, nana,

bababa, babana, banaba, banana, nababa, nabana, nanaba, nanana,

babababa, bababana, … }

1/46

Regular operations: Kleene-+

• Kleene-+ is just like Kleene-* except that the pattern is forced to

occur at least once.

• UNIX: search for lines consisting purely of vowels (not including the

empty line):

– egrep -i `^(a|e|i|o|u)+$’

1/47

Regular operations: Kleene-+

• Kleene-+ is just like Kleene-* except that the pattern is forced to

occur at least once.

• UNIX: search for lines consisting purely of vowels (not including the

empty line):

– egrep -i `^(a|e|i|o|u)+$’

• Computability:

Suppose we have a language B = {ba, na}.

What is B+
and how does it defer from B*?

1/48

Regular operations: Kleene-+

• Kleene-+ is just like Kleene-* except that the pattern is forced to

occur at least once.

• UNIX: search for lines consisting purely of vowels (not including the

empty line):

– egrep -i `^(a|e|i|o|u)+$’

• Computability:

Suppose we have a language B = {ba, na}.

What is B+
and how does it defer from B*?

B+
= {ba, na}

+
= {ba, na, baba, bana, naba, nana, bababa, babana,

banaba, banana, nababa, nabana, nanaba, nanana, babababa,

bababana, … }

The only difference is the absence of H

1/49

Closure of Regular Languages

• When applying regular operations to regular languages, regular languages

result. That is, regular languages are closed under the operations of

union, concatenation, and Kleene-*.

• Goal: Show that regular languages are closed under regular operations.

In particular, given regular languages L
1

and L
2
, show:

1. L
1
� L

2
is regular,

2. L
1
x L

2
is regular,

3. L
1
* is regular.

• No.’s 2 and 3 are deferred until we learn about NFA’s.
• However, No. 1 can be achieved immediately.

1/50

Union Example

• Problem: Draw the FA for

L = { x � {0,1}* | |x|=even or x ends with 11}

1/51

Let’s start by drawing M
1

and M
2
,

the automaton recognizing L
1

and L
2

• L
1

= { x � {0,1}* | x has even length}

• L
2

= { x � {0,1}* | x ends with 11 }

1/52

Cartesian Product Construction

• We want to construct a finite automaton M that recognizes

any strings belonging to L
1

or L
2
.

• Idea: Build M such that it simulates both M
1

and M
2

simultaneously

and accept if either of the automatons accepts

1/53

Cartesian Product Construction

• We want to construct a finite automaton M that recognizes

any strings belonging to L
1

or L
2
.

• Idea: Build M such that it simulates both M
1

and M
2

simultaneously

and accept if either of the automatons accepts

• Definition: The Cartesian product of two sets A and B,
denoted by 𝐴 × B, is the set of all ordered pairs (a,b)

where a�A and b�B.

1/54

Formal Definition

• Given two automata
𝑀1 = (𝑄1, Σ, 𝛿1, 𝑞1, 𝐹1) and 𝑀2 = (𝑄2, Σ, 𝛿2, 𝑞2, 𝐹2)

• Define the unioner of M1 and M2 by:
𝑀∪ = (𝑄1 × 𝑄2, Σ, 𝛿1 × 𝛿2, (𝑞1, 𝑞2), 𝐹∪)

- where the accept state 𝑞1, 𝑞2 is the combined start state
of both automata

- where 𝐹∪ is the set of ordered pairs in 𝑄1 × 𝑄2with at least one
state an accept state. That is: 𝐹∪ = 𝑄1 × 𝐹2 ∪ 𝐹1 × 𝑄2

- where the transition function d is defined as
𝛿 𝑞1, 𝑞2 , 𝑗 = 𝛿1 𝑞1, 𝑗 , 𝛿2 𝑞2, 𝑗 = 𝛿1 × 𝛿2

1/55

Union Example: L
1
�L

2

• When using the Cartesian Product Construction:

0
1

0 0

0

0

0

1
1

1

11

1/56

Other constructions: Intersector

• Other constructions are possible, for example an intersector:

• Accept only when both ending states are accept states. So the only
difference is in the set of accept states. Formally the intersector of
M1 and M2 is given by
𝑀∩ = 𝑄1 × 𝑄2, Σ, 𝛿1 × 𝛿2, 𝑞0,1, 𝑞0,2 , 𝐹∩ , where 𝐹∩ = 𝐹1 × 𝐹2.

1/57

Other constructions: Intersector

• Other constructions are possible, for example an intersector:

• Accept only when both ending states are accept states. So the only
difference is in the set of accept states. Formally the intersector of
M1 and M2 is given by
𝑀∩ = 𝑄1 × 𝑄2, Σ, 𝛿1 × 𝛿2, 𝑞0,1, 𝑞0,2 , 𝐹∩ , where 𝐹∩ = 𝐹1 × 𝐹2.

(b,y)(b,x)

(a,x) (a,y) (a,z)

(b,z)

0
1

0 0

0

0

0

1
1

1

11

1/58

Other constructions: Difference

• The difference of two sets is defined by A - B = {x � A | x � B}

• In other words, accept when first automaton accepts and
second does not

𝑀− = (𝑄1 × 𝑄2, Σ, 𝛿1 × 𝛿2, 𝑞0,1, 𝑞0,2 , 𝐹−),
where 𝐹− = 𝐹1 × 𝑄2 − 𝑄1 × 𝐹2

1/59

Other constructions: Difference

• The difference of two sets is defined by A - B = {x � A | x � B}

• In other words, accept when first automaton accepts and
second does not

𝑀− = (𝑄1 × 𝑄2, Σ, 𝛿1 × 𝛿2, 𝑞0,1, 𝑞0,2 , 𝐹−),
where 𝐹− = 𝐹1 × 𝑄2 − 𝑄1 × 𝐹2

(b,y)(b,x)

(a,x) (a,y) (a,z)

(b,z)

0
1

0 0

0

0

0

1
1

1

11

Other constructions: Symmetric difference

• The symmetric difference of two sets A, B is A�B =A�B - A�B
• Accept when exactly one automaton accepts:

𝑀⊕ = (𝑄1 × 𝑄2, Σ, 𝛿1 × 𝛿2, 𝑞0,1, 𝑞0,2 , 𝐹⊕), where 𝐹⊕ = 𝐹∪ − 𝐹∩

1/60

Other constructions: Symmetric difference

• The symmetric difference of two sets A, B is A�B =A�B - A�B
• Accept when exactly one automaton accepts:

𝑀⊕ = (𝑄1 × 𝑄2, Σ, 𝛿1 × 𝛿2, 𝑞0,1, 𝑞0,2 , 𝐹⊕), where 𝐹⊕ = 𝐹∪ − 𝐹∩

1/61

(b,y)(b,x)

(a,x) (a,y) (a,z)

(b,z)

0
1

0 0

0

0

0

1
1

1

11

1/62

Complement

• How about the complement? The complement is only defined
with respect to some universe.

• Given the alphabet 6, the default universe is just the set of all
possible strings 6*. Therefore, given a language L over 6, i.e.
L � 6* the complement of L is 6* - L

• Note: Since we know how to compute set difference, and we
know how to construct the automaton for 6* we can construct
the automaton for CL .

1/63

Complement

• How about the complement? The complement is only defined
with respect to some universe.

• Given the alphabet 6, the default universe is just the set of all
possible strings 6*. Therefore, given a language L over 6, i.e.
L � 6* the complement of L is 6* - L

• Note: Since we know how to compute set difference, and we
know how to construct the automaton for 6* we can construct
the automaton for CL .

• Question: Is there a simpler construction forCL ?

1/64

Complement

• How about the complement? The complement is only defined
with respect to some universe.

• Given the alphabet 6, the default universe is just the set of all
possible strings 6*. Therefore, given a language L over 6, i.e.
L � 6* the complement of L is 6* - L

• Note: Since we know how to compute set difference, and we
know how to construct the automaton for 6* we can construct
the automaton for CL .

• Question: Is there a simpler construction forCL ?

• Answer: Just switch accept-states with non-accept states.

1/65

Complement Example

x y z
1

0

0

1

1

Original:

x y z
1

0

0

1

1

Complement: yx

1/66

Boolean-Closure Summary

• We have shown constructively that regular languages are closed under

boolean operations. I.e., given regular languages L
1

and L
2

we saw that:

1. L
1
� L

2
is regular,

2. L
1
� L

2
is regular,

3. L
1
-L

2
is regular,

4. L
1
� L

2
is regular,

5. CL
1

is regular.

• No. 2 to 4 also happen to be regular operations. We still need to show

that regular languages are closed under concatenation and Kleene-*.

• Tough question: Can’t we do a similar trick for concatenation?

