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1 Pumping Lemma [Exam]

Is the following language regular? Prove your claims!

L = {0a1b0c1d | a, b, c, d ≥ 0 and a = 1, b = 2 and c = d}

2 Deterministic Finite Automata [Exam]

Transform the NFA A in Figure 1 into an equivalent DFA using the powerset construction
presented in the lecture, while assuming Σ = {0, 1}. (Hint: Only construct states which are
necessary!)
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Figure 1: NFA A.



3 Transforming Automata [Exam]

Consider the DFA B in Figure 2 over the alphabet Σ = {0, 1}. Give a regular expression for the
language L accepted by the automaton B. If you like, you can do this by ripping out states as
presented in the lecture.
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Figure 2: DFA B.

4 Regular and Context-Free Languages

a) Consider the context-free grammar G with the production S → SS | 1S2 | 0. Describe the
language L(G) in words, and prove that L(G) is not regular.

b) The regular languages are a subset of the context-free languages. Give the context-free
grammar for an arbitrary language L that is regular.

5 Context-Free Grammars

Give context-free grammars for the following languages over the alphabet Σ = {0, 1}:

a) L1 = {w | the length of w is odd}

b) L2 = {w | contains more 1s than 0s}

6 Ambiguity

Consider the following context-free grammar G with non-terminals S and A, start symbol S,
and terminals “(”, “)”, and “0”:

S → SA | ε
A → AA | (S) | 0

a) What are the eight shortest words produced by G?

b) Context-free grammars can be ambiguous. Prove or disprove that G is unambiguous.

c) Design a push-down automaton M that accepts the language L(G). If possible, make M
deterministic.

2


