
Chapter 24

Distributed Storage

How do you store 1M movies, each with a size of about 1GB, on 1M nodes, each
equipped with a 1TB disk? Simply store the movies on the nodes, arbitrarily,
and memorize (with a global index) which movie is stored on which node. What
if the set of movies or nodes changes over time, and you do not want to change
your global index too often?

24.1 Consistent Hashing

Several variants of hashing will do the job, e.g. consistent hashing:

Algorithm 24.1 Consistent Hashing

1: Hash the unique file name of each movie x with a known set of hash functions
hi(x)→ [0, 1), for i = 1, . . . , k

2: Hash the unique name (e.g., IP address and port number) of each node with
the same set of hash functions hi, for i = 1, . . . , k

3: Store a copy of movie x on node u if hi(x) ≈ hi(u), for any i. More formally,
store movie x on node u if

|hi(x)− hi(u)| = min
v
{|hi(x)− hi(v)|}, for any i

Theorem 24.2 (Consistent Hashing). In expectation, each node in Algorithm
24.1 stores km/n movies, where k is the number of hash functions, m the number
of different movies and n the number of nodes.

Proof. For a specific movie (out of m) and a specific hash function (out of k),
all n nodes have the same probability 1/n to hash closest to the movie hash.
By linearity of expectation, each node stores km/n movies in expectation if we
also count duplicates of movies on a node.

251

252 CHAPTER 24. DISTRIBUTED STORAGE

Remarks:

• Let us do a back-of-the-envelope calculation. We have m = 1M
movies, n = 1M nodes, each node has storage for 1TB/1GB = 1K
movies, i.e., we use k = 1K hash functions. Theorem 24.2 shows each
node stores about 1K movies.

• Using the Chernoff bound below with µ = km/n = 1K, the probability
that a node uses 10% more memory than expected is less than 1%.

Facts 24.3. A version of a Chernoff bound states the following:
Let x1, . . . , xn be independent Bernoulli-distributed random variables with
Pr[xi = 1] = pi and Pr[xi = 0] = 1 − pi = qi, then for X :=

∑n
i=1 xi and

µ := E[X] =
∑n
i=1 pi the following holds:

for any δ > 0: Pr[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ
Remarks:

• Instead of storing movies directly on nodes as in Algorithm 24.1, we
can also store the movies on any nodes we like. The nodes of Algorithm
24.1 then simply store forward pointers to the actual movie locations.

• In this chapter we want to push unreliability to the extreme. What if
the nodes are so unreliable that on average a node is only available for
1 hour? In other words, nodes exhibit a high churn, they constantly
join and leave the distributed system.

• With such a high churn, hundreds or thousands of nodes will change
every second. No single node can have an accurate picture of what
other nodes are currently in the system. This is remarkably different
to classic distributed systems, where a single unavailable node may
already be a minor disaster: all the other nodes have to get a consistent
view (Definition 25.5) of the system again. In high churn systems it
is impossible to have a consistent view at any time.

• Instead, each node will just know about a small subset of 100 or less
other nodes (“neighbors”). This way, nodes can withstand high churn
situations.

• On the downside, nodes will not directly know which node is responsi-
ble for what movie. Instead, a node searching for a movie might have
to ask a neighbor node, which in turn will recursively ask another
neighbor node, until the correct node storing the movie (or a forward
pointer to the movie) is found. The nodes of our distributed storage
system form a virtual network, also called an overlay network.

24.2 Hypercubic Networks

In this section we present a few overlay topologies of general interest.

24.2. HYPERCUBIC NETWORKS 253

Definition 24.4 (Topology Properties). Our virtual network should have the
following properties:

• The network should be (somewhat) homogeneous: no node should play a
dominant role, no node should be a single point of failure.

• The nodes should have IDs, and the IDs should span the universe [0, 1),
such that we can store data with hashing, as in Algorithm 24.1.

• Every node should have a small degree, if possible polylogarithmic in n,
the number of nodes. This will allow every node to maintain a persistent
connection with each neighbor, which will help us to deal with churn.

• The network should have a small diameter, and routing should be easy.
If a node does not have the information about a data item, then it should
know which neighbor to ask. Within a few (polylogarithmic in n) hops,
one should find the node that has the correct information.

2

1

4

Figure 24.5: The structure of a fat tree.

Remarks:

• Some basic network topologies used in practice are trees, rings, grids
or tori. Many other suggested networks are simply combinations or
derivatives of these.

• The advantage of trees is that the routing is very easy: for every
source-destination pair there is only one path. However, since the
root of a tree is a bottleneck, trees are not homogeneous. Instead,
so-called fat trees should be used. Fat trees have the property that
every edge connecting a node v to its parent u has a capacity that is
proportional to the number of leaves of the subtree rooted at v. See
Figure 24.5 for a picture.

• Fat trees belong to a family of networks that require edges of non-
uniform capacity to be efficient. Networks with edges of uniform ca-
pacity are easier to build. This is usually the case for grids and tori.

254 CHAPTER 24. DISTRIBUTED STORAGE

Unless explicitly mentioned, we will treat all edges in the following to
be of capacity 1.

Definition 24.6 (Torus, Mesh). Let m, d ∈ N. The (m, d)-mesh M(m, d) is a
graph with node set V = [m]d and edge set

E =

{
{(a1, . . . , ad), (b1, . . . , bd)} | ai, bi ∈ [m],

d∑
i=1

|ai − bi| = 1

}
,

where [m] means the set {0, . . . ,m − 1}. The (m, d)-torus T (m, d) is a graph
that consists of an (m, d)-mesh and additionally wrap-around edges from nodes
(a1, . . . , ai−1,m − 1, ai+1, . . . , ad) to nodes (a1, . . . , ai−1, 0, ai+1, . . . , ad) for all
i ∈ {1, . . . , d} and all aj ∈ [m] with j 6= i. In other words, we take the expression
ai − bi in the sum modulo m prior to computing the absolute value. M(m, 1) is
also called a path, T (m, 1) a cycle, and M(2, d) = T (2, d) a d-dimensional
hypercube. Figure 24.7 presents a linear array, a torus, and a hypercube.

011010

110

100

000 001

101

111

M(2,3)

0 1 2

M(,1)m

−1m

01

02

00 10

11

12

03

20

21

22

13

30

31

32

23 33

(4,2)T

Figure 24.7: The structure of M(m, 1), T (4, 2), and M(2, 3).

Remarks:

• Routing on a mesh, torus, or hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring t one
only needs to fix each “wrong” bit, one at a time; in other words, if
the source and the target differ by k bits, there are k! routes with k
hops.

• As required by Definition 24.4, the d-bit IDs of the nodes need to be
mapped to the universe [0, 1). One way to do this is by interpreting
an ID as the binary representation of the fractional part of a decimal
number. For example, the ID 101 is mapped to 0.1012 which has a
decimal value of 0 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3 = 5

8 .

• The Chord architecture is a close relative of the hypercube, basically
a less rigid hypercube. The hypercube connects every node with an
ID in [0, 1) with every node in exactly distance 2−i, i = 1, 2, . . . , d in
[0, 1). Chord instead connect nodes with approximately distance 2−i.

24.2. HYPERCUBIC NETWORKS 255

• The hypercube has many derivatives, the so-called hypercubic net-
works. Among these are the butterfly, cube-connected-cycles, shuffle-
exchange, and de Bruijn graph. We start with the butterfly, which is
basically a “rolled out” hypercube.

Definition 24.8 (Butterfly). Let d ∈ N. The d-dimensional butterfly BF (d)
is a graph with node set V = [d+ 1]× [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(i, α), (i+ 1, α)} | i ∈ [d], α ∈ [2]d}

and

E2 = {{(i, α), (i+ 1, β)} | i ∈ [d], α, β ∈ [2]d, α⊕ β = 2i}.

A node set {(i, α) | α ∈ [2]d} is said to form level i of the butterfly. The d-
dimensional wrap-around butterfly W-BF(d) is defined by taking the BF (d)
and having (d, α) = (0, α) for all α ∈ [2]d.

Remarks:

• Figure 24.9 shows the 3-dimensional butterfly BF (3). The BF (d) has
(d+ 1)2d nodes, 2d · 2d edges and degree 4. It is not difficult to check
that combining the node sets {(i, α) | i ∈ [d]} for all α ∈ [2]d into a
single node results in the hypercube.

• Butterflies have the advantage of a constant node degree over hyper-
cubes, whereas hypercubes feature more fault-tolerant routing.

• You may have seen butterfly-like structures before, e.g. sorting net-
works, communication switches, data center networks, fast fourier
transform (FFT). The Benes network (telecommunication) is noth-
ing but two back-to-back butterflies. The Clos network (data centers)
is a close relative to Butterflies too. Actually, merging the 2i nodes on
level i that share the first d − i bits into a single node, the Butterfly
becomes a fat tree. Every year there are new applications for which
hypercubic networks are the perfect solution!

• Next we define the cube-connected-cycles network. It only has a de-
gree of 3 and it results from the hypercube by replacing the corners
by cycles.

Definition 24.10 (Cube-Connected-Cycles). Let d ∈ N. The cube-
connected-cycles network CCC(d) is a graph with node set V = {(a, p) | a ∈
[2]d, p ∈ [d]} and edge set

E =
{
{(a, p), (a, (p+ 1) mod d)} | a ∈ [2]d, p ∈ [d]

}
∪
{
{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], |a− b| = 2p

}

256 CHAPTER 24. DISTRIBUTED STORAGE

000 100010 110001 101011 111

1

2

0

3

Figure 24.9: The structure of BF(3).

000 001 010 011 100 101 110 111

2

1

0

(110,1)

(011,2)

(101,1)

(001,2)

(001,1)

(001,0)(000,0)

(100,0)

(100,1)

(100,2)

(000,2)

(000,1)

(010,1)

(010,0)

(010,2)

(110,2)

(110,0) (111,0)

(111,1)

(111,2)

(011,1)

(011,0)

(101,2)

(101,0)

Figure 24.11: The structure of CCC(3).

Remarks:

• Two possible representations of a CCC can be found in Figure 24.11.

• The shuffle-exchange is yet another way of transforming the hypercu-
bic interconnection structure into a constant degree network.

Definition 24.12 (Shuffle-Exchange). Let d ∈ N. The d-dimensional
shuffle-exchange SE(d) is defined as an undirected graph with node set
V = [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(a1, . . . , ad), (a1, . . . , ād)} | (a1, . . . , ad) ∈ [2]d, ād = 1− ad}

and
E2 = {{(a1, . . . , ad), (ad, a1, . . . , ad−1)} | (a1, . . . , ad) ∈ [2]d} .

Figure 24.13 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 24.14 (DeBruijn). The b-ary DeBruijn graph of dimension
d DB(b, d) is an undirected graph G = (V,E) with node set V = {v ∈ [b]d}

24.2. HYPERCUBIC NETWORKS 257

000 001

100

010

101

011

110 111 0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

SE(3) SE(4)

E

E

1

2

Figure 24.13: The structure of SE(3) and SE(4).

and edge set E that contains all edges {v, w} with the property that w ∈
{(x, v1, . . . , vd−1) : x ∈ [b]}, where v = (v1, . . . , vd).

010

100

001

110

1111100

01

000
101

011

10

Figure 24.15: The structure of DB(2, 2) and DB(2, 3).

Remarks:

• Two examples of a DeBruijn graph can be found in Figure 24.15.

• There are some data structures which also qualify as hypercubic net-
works. An example of a hypercubic network is the skip list, the bal-
anced binary search tree for the lazy programmer:

Definition 24.16 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

• Search, insert, and delete can be implemented in O(log n) expected
time in a skip list, simply by jumping from higher levels to lower ones
when overshooting the searched position. Also, the amortized memory
cost of each object is constant, as on average an object only has two
forward links.

• The randomization can easily be discarded, by deterministically pro-
moting a constant fraction of objects of level i to level i + 1, for all

258 CHAPTER 24. DISTRIBUTED STORAGE

i. When inserting or deleting, object o simply checks whether its left
and right level i neighbors are being promoted to level i+ 1. If none
of them is, promote object o itself. Essentially we establish a maximal
independent set (MIS) on each level, hence at least every third and at
most every second object is promoted.

• There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always pro-
mote all the nodes, similarly to a balanced binary tree: All nodes are
part of the root level of the binary tree. Half the nodes are promoted
left, and half the nodes are promoted right, on each level. Hence on
level i we have have 2i lists (or, if we connect the last element again
with the first: rings) of about n/2i objects. The skip graph features
all the properties of Definition 24.4.

• More generally, how are degree and diameter of Definition 24.4 re-
lated? The following theorem gives a general lower bound.

Theorem 24.17. Every graph of maximum degree d > 2 and size n must have
a diameter of at least d(log n)/(log(d− 1))e − 2.

Proof. Suppose we have a graph G = (V,E) of maximum degree d and size
n. Start from any node v ∈ V . In a first step at most d other nodes can be
reached. In two steps at most d · (d−1) additional nodes can be reached. Thus,
in general, in at most r steps at most

1 +

r−1∑
i=0

d · (d− 1)i = 1 + d · (d− 1)r − 1

(d− 1)− 1
≤ d · (d− 1)r

d− 2

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V within r steps. Hence,

(d− 1)r ≥ (d− 2) · n
d

⇔ r ≥ logd−1((d− 2) · n/d) .

Since logd−1((d − 2)/d) > −2 for all d > 2, this is true only if r ≥
d(log n)/(log(d− 1))e − 2.

Remarks:

• In other words, constant-degree hypercubic networks feature an
asymptotically optimal diameter D.

• Other hypercubic graphs manage to have a different tradeoff between
node degree d and diameter D. The pancake graph, for instance, min-
imizes the maximum of these with max(d,D) = Θ(log n/ log log n).
The ID of a node u in the pancake graph of dimension d is an ar-
bitrary permutation of the numbers 1, 2, . . . , d. Two nodes u, v are
connected by an edge if one can get the ID of node v by taking the
ID of node u, and reversing (flipping) the first k (for k = 1, . . . , d)
numbers of u’s ID. For example, in dimension d = 4, nodes u = 2314
and v = 1324 are neighbors.

24.3. DHT & CHURN 259

• There are a few other interesting graph classes which are not hyper-
cubic networks, but nevertheless seem to relate to the properties of
Definition 24.4. Small-world graphs (a popular representations for
social networks) also have small diameter, however, in contrast to hy-
percubic networks, they are not homogeneous and feature nodes with
large degrees.

• Expander graphs (an expander graph is a sparse graph which has
good connectivity properties, that is, from every not too large subset
of nodes you are connected to an even larger set of nodes) are homo-
geneous, have a low degree and small diameter. However, expanders
are often not routable.

24.3 DHT & Churn

Definition 24.18 (Distributed Hash Table (DHT)). A distributed hash table
(DHT) is a distributed data structure that implements a distributed storage. A
DHT should support at least (i) a search (for a key) and (ii) an insert (key,
object) operation, possibly also (iii) a delete (key) operation.

Remarks:

• A DHT has many applications beyond storing movies, e.g., the Inter-
net domain name system (DNS) is essentially a DHT.

• A DHT can be implemented as a hypercubic overlay network with
nodes having identifiers such that they span the ID space [0, 1).

• A hypercube can directly be used for a DHT. Just use a globally
known set of hash functions hi, mapping movies to bit strings with d
bits.

• Other hypercubic structures may be a bit more intricate when using
it as a DHT: The butterfly network, for instance, may directly use the
d+ 1 layers for replication, i.e., all the d+ 1 nodes are responsible for
the same ID.

• Other hypercubic networks, e.g. the pancake graph, might need a bit
of twisting to find appropriate IDs.

• We assume that a joining node knows a node which already belongs to
the system. This is known as the bootstrap problem. Typical solutions
are: If a node has been connected with the DHT previously, just try
some of these previous nodes. Or the node may ask some authority
for a list of IP addresses (and ports) of nodes that are regularly part
of the DHT.

• Many DHTs in the literature are analyzed against an adversary that
can crash a fraction of random nodes. After crashing a few nodes the
system is given sufficient time to recover again. However, this seems
unrealistic. The scheme sketched in this section significantly differs
from this in two major aspects.

260 CHAPTER 24. DISTRIBUTED STORAGE

• First, we assume that joins and leaves occur in a worst-case manner.
We think of an adversary that can remove and add a bounded number
of nodes; the adversary can choose which nodes to crash and how nodes
join.

• Second, the adversary does not have to wait until the system is recov-
ered before it crashes the next batch of nodes. Instead, the adversary
can constantly crash nodes, while the system is trying to stay alive.
Indeed, the system is never fully repaired but always fully functional.
In particular, the system is resilient against an adversary that contin-
uously attacks the “weakest part” of the system. The adversary could
for example insert a crawler into the DHT, learn the topology of the
system, and then repeatedly crash selected nodes, in an attempt to
partition the DHT. The system counters such an adversary by con-
tinuously moving the remaining or newly joining nodes towards the
areas under attack.

• Clearly, we cannot allow the adversary to have unbounded capabili-
ties. In particular, in any constant time interval, the adversary can
at most add and/or remove O(log n) nodes, n being the total num-
ber of nodes currently in the system. This model covers an adversary
which repeatedly takes down nodes by a distributed denial of service
attack, however only a logarithmic number of nodes at each point in
time. The algorithm relies on messages being delivered timely, in at
most constant time between any pair of operational nodes, i.e., the
synchronous model. Using the trivial synchronizer this is not a prob-
lem. We only need bounded message delays in order to have a notion
of time which is needed for the adversarial model. The duration of
a round is then proportional to the propagation delay of the slowest
message.

Algorithm 24.19 DHT

1: Given: a globally known set of hash functions hi, and a hypercube (or any
other hypercubic network)

2: Each hypercube virtual node (“hypernode”) consists of Θ(log n) nodes.
3: Nodes have connections to all other nodes of their hypernode and to nodes

of their neighboring hypernodes.
4: Because of churn, some of the nodes have to change to another hypernode

such that up to constant factors, all hypernodes own the same number of
nodes at all times.

5: If the total number of nodes n grows or shrinks above or below a certain
threshold, the dimension of the hypercube is increased or decreased by one,
respectively.

Remarks:

• Having a logarithmic number of hypercube neighbors, each with a
logarithmic number of nodes, means that each node has Θ(log2 n)
neighbors. However, with some additional bells and whistles one can
achieve Θ(log n) neighbor nodes.

24.3. DHT & CHURN 261

• The balancing of nodes among the hypernodes can be seen as a dy-
namic token distribution problem on the hypercube. Each hypernode
has a certain number of tokens, the goal is to distribute the tokens
along the edges of the graph such that all hypernodes end up with the
same or almost the same number of tokens. While tokens are moved
around, an adversary constantly inserts and deletes tokens. See also
Figure 24.20.

Figure 24.20: A simulated 2-dimensional hypercube with four hypernodes, each
consisting of several nodes. Also, all the nodes are either in the core or in
the periphery of a node. All nodes within the same hypernode are completely
connected to each other, and additionally, all nodes of a hypernode are connected
to the core nodes of the neighboring nodes. Only the core nodes store data items,
while the peripheral nodes move between the nodes to balance biased adversarial
churn.

• In summary, the storage system builds on two basic components: (i)
an algorithm which performs the described dynamic token distribution
and (ii) an information aggregation algorithm which is used to esti-
mate the number of nodes in the system and to adapt the dimension
of the hypercube accordingly:

Theorem 24.21 (DHT with Churn). We have a fully scalable, efficient distrib-
uted storage system which tolerates O(log n) worst-case joins and/or crashes per
constant time interval. As in other storage systems, nodes have O(log n) overlay
neighbors, and the usual operations (e.g., search, insert) take time O(log n).

Remarks:

• Indeed, handling churn is only a minimal requirement to make a dis-
tributed storage system work. Advanced studies proposed more elab-
orate architectures which can also handle other security issues, e.g.,
privacy or Byzantine attacks.

Chapter Notes

The ideas behind distributed storage were laid during the peer-to-peer (P2P)
file sharing hype around the year 2000, so a lot of the seminal research

262 CHAPTER 24. DISTRIBUTED STORAGE

in this area is labeled P2P. The paper of Plaxton, Rajaraman, and Richa
[PRR97] laid out a blueprint for many so-called structured P2P architec-
ture proposals, such as Chord [SMK+01], CAN [RFH+01], Pastry [RD01],
Viceroy [MNR02], Kademlia [MM02], Koorde [KK03], SkipGraph [AS03], Skip-
Net [HJS+03], or Tapestry [ZHS+04]. Also the paper of Plaxton et. al. was
standing on the shoulders of giants. Some of its eminent precursors are: lin-
ear and consistent hashing [KLL+97], locating shared objects [AP90, AP91],
compact routing [SK85, PU88], and even earlier: hypercubic networks, e.g.
[AJ75, Wit81, GS81, BA84].

Furthermore, the techniques in use for prefix-based overlay structures are
related to a proposal called LAND, a locality-aware distributed hash table pro-
posed by Abraham et al. [AMD04].

More recently, a lot of P2P research focussed on security aspects, describing
for instance attacks [LMSW06, SENB07, Lar07], and provable countermeasures
[KSW05, AS09, BSS09]. Another topic currently garnering interest is using
P2P to help distribute live streams of video content on a large scale [LMSW07].
There are several recommendable introductory books on P2P computing, e.g.
[SW05, SG05, MS07, KW08, BYL08].

Some of the figures in this chapter have been provided by Christian Schei-
deler.

Bibliography

[AJ75] George A. Anderson and E. Douglas Jensen. Computer Interconnec-
tion Structures: Taxonomy, Characteristics, and Examples. ACM
Comput. Surv., 7(4):197–213, December 1975.

[AMD04] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: stretch
(1 + epsilon) locality-aware networks for DHTs. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’04, pages 550–559, Philadelphia, PA, USA, 2004. Society for
Industrial and Applied Mathematics.

[AP90] Baruch Awerbuch and David Peleg. Efficient Distributed Construc-
tion of Sparse Covers. Technical report, The Weizmann Institute of
Science, 1990.

[AP91] Baruch Awerbuch and David Peleg. Concurrent Online Tracking of
Mobile Users. In SIGCOMM, pages 221–233, 1991.

[AS03] James Aspnes and Gauri Shah. Skip Graphs. In SODA, pages 384–
393. ACM/SIAM, 2003.

[AS09] Baruch Awerbuch and Christian Scheideler. Towards a Scalable and
Robust DHT. Theory Comput. Syst., 45(2):234–260, 2009.

[BA84] L. N. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hy-
perbus Structures for a Computer Network. IEEE Trans. Comput.,
33(4):323–333, April 1984.

[BSS09] Matthias Baumgart, Christian Scheideler, and Stefan Schmid. A
DoS-resilient information system for dynamic data management. In

BIBLIOGRAPHY 263

Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, SPAA ’09, pages 300–309, New York,
NY, USA, 2009. ACM.

[BYL08] John Buford, Heather Yu, and Eng Keong Lua. P2P Networking
and Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[GS81] J.R. Goodman and C.H. Sequin. Hypertree: A Multiprocessor
Interconnection Topology. Computers, IEEE Transactions on, C-
30(12):923–933, dec. 1981.

[HJS+03] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. SkipNet: a scalable overlay network
with practical locality properties. In Proceedings of the 4th con-
ference on USENIX Symposium on Internet Technologies and Sys-
tems - Volume 4, USITS’03, pages 9–9, Berkeley, CA, USA, 2003.
USENIX Association.

[KK03] M. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-
Optimal Distributed Hash Table. In M. Frans Kaashoek and Ion
Stoica, editors, IPTPS, volume 2735 of Lecture Notes in Computer
Science, pages 98–107. Springer, 2003.

[KLL+97] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina
Panigrahy, Matthew S. Levine, and Daniel Lewin. Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Frank Thomson Leighton
and Peter W. Shor, editors, STOC, pages 654–663. ACM, 1997.

[KSW05] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A Self-
Repairing Peer-to-Peer System Resilient to Dynamic Adversarial
Churn. In 4th International Workshop on Peer-To-Peer Systems
(IPTPS), Cornell University, Ithaca, New York, USA, Springer
LNCS 3640, February 2005.

[KW08] Javed I. Khan and Adam Wierzbicki. Introduction: Guest edi-
tors’ introduction: Foundation of peer-to-peer computing. Comput.
Commun., 31(2):187–189, February 2008.

[Lar07] Erik Larkin. Storm Worm’s virulence may change tac-
tics. http://www.networkworld.com/news/2007/080207-black-hat-
storm-worms-virulence.html, Agust 2007. Last accessed on June 11,
2012.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

[LMSW07] Thomas Locher, Remo Meier, Stefan Schmid, and Roger Watten-
hofer. Push-to-Pull Peer-to-Peer Live Streaming. In 21st Inter-
national Symposium on Distributed Computing (DISC), Lemesos,
Cyprus, September 2007.

264 CHAPTER 24. DISTRIBUTED STORAGE

[MM02] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems,
IPTPS ’01, pages 53–65, London, UK, UK, 2002. Springer-Verlag.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scal-
able and dynamic emulation of the butterfly. In Proceedings of the
twenty-first annual symposium on Principles of distributed comput-
ing, PODC ’02, pages 183–192, New York, NY, USA, 2002. ACM.

[MS07] Peter Mahlmann and Christian Schindelhauer. Peer-to-Peer Net-
works. Springer, 2007.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa.
Accessing Nearby Copies of Replicated Objects in a Distributed
Environment. In SPAA, pages 311–320, 1997.

[PU88] David Peleg and Eli Upfal. A tradeoff between space and efficiency
for routing tables. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages 43–52, New
York, NY, USA, 1988. ACM.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329–350, November 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. SIGCOMM
Comput. Commun. Rev., 31(4):161–172, August 2001.

[SENB07] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploit-
ing KAD: possible uses and misuses. SIGCOMM Comput. Commun.
Rev., 37(5):65–70, October 2007.

[SG05] Ramesh Subramanian and Brian D. Goodman. Peer to Peer Com-
puting: The Evolution of a Disruptive Technology. IGI Publishing,
Hershey, PA, USA, 2005.

[SK85] Nicola Santoro and Ramez Khatib. Labelling and Implicit Routing
in Networks. Comput. J., 28(1):5–8, 1985.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. SIGCOMM Comput. Commun. Rev.,
31(4):149–160, August 2001.

[SW05] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and
Applications, volume 3485 of Lecture Notes in Computer Science.
Springer, 2005.

[Wit81] L. D. Wittie. Communication Structures for Large Networks of
Microcomputers. IEEE Trans. Comput., 30(4):264–273, April 1981.

BIBLIOGRAPHY 265

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, An-
thony D. Joseph, and John Kubiatowicz. Tapestry: a resilient
global-scale overlay for service deployment. IEEE Journal on Se-
lected Areas in Communications, 22(1):41–53, 2004.

	Distributed Storage
	Consistent Hashing
	Hypercubic Networks
	DHT & Churn

