
Chapter 13

Consistency & Logical Time

You submit a comment on your favorite social media platform using your phone.
The comment is immediately visible on the phone, but not on your laptop. Is
this level of consistency acceptable?

13.1 Consistency Models

Definition 13.1 (Object). An object is a variable or a data structure storing
information.

Remarks:

• Object is a general term for any entity that can be modified, like a
queue, stack, memory slot, file system, etc.

Definition 13.2 (Operation). An operation f accesses or manipulates an
object. The operation f starts at wall-clock time f∗ and ends at wall-clock time
f†.

Remarks:

• An operation can be as simple as extracting an element from a data
structure, but an operation may also be more complex, like fetching
an element, modifying it and storing it again.

• If f† < g∗, we simply write f < g.

Definition 13.3 (Execution). An execution E is a set of operations on one
or multiple objects that are executed by a set of nodes.

Definition 13.4 (Sequential Execution). An execution restricted to a single
node is a sequential execution. All operations are executed sequentially, which
means that no two operations f and g are concurrent, i.e., we have f < g or
g < f .

Definition 13.5 (Semantic Equivalence). Two executions are semantically
equivalent if they contain exactly the same operations. Moreover, each pair of
corresponding operations has the same effect in both executions.

115

116 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Remarks:

• For example, when dealing with a stack object, corresponding pop

operations in two different semantically equivalent executions must
yield the same element of the stack.

• In general, the notion of semantic equivalence is non-trivial and de-
pendent on the type of the object.

Definition 13.6 (Linearizability). An execution E is called linearizable (or
atomically consistent), if there is a sequence of operations (sequential execution)
S such that:

• S is correct and semantically equivalent to E.

• Whenever f < g for two operations f, g in E, then also f < g in S.

Definition 13.7. A linearization point of operation f is some f• ∈ [f∗, f†].

Lemma 13.8. An execution E is linearizable if and only if there exist lin-
earization points such that the sequential execution S that results in ordering
the operations according to those linearization points is semantically equivalent
to E.

Proof. Let f and g be two operations in E with f† < g∗. Then by definition of
linearization points we also have f• < g• and therefore f < g in S.

Definition 13.9 (Sequential Consistency). An execution E is called sequen-
tially consistent, if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E.

• Whenever f < g for two operations f, g on the same node in E, then
also f < g in S.

Lemma 13.10. Every linearizable execution is also sequentially consistent, i.e.,
linearizability =⇒ sequential consistency.

Proof. Since linearizability (order of operations on any nodes must be respected)
is stricter than sequential consistency (only order of operations on the same node
must be respected), the lemma follows immediately.

Definition 13.11 (Quiescent Consistency). An execution E is called quies-
cently consistent, if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E.

• Let t be some quiescent point, i.e., for all operations f we have f† < t or
f∗ > t. Then for every t and every pair of operations g, h with g† < t and
h∗ > t we also have g < h in S.

Lemma 13.12. Every linearizable execution is also quiescently consistent, i.e.,
linearizability =⇒ quiescent consistency.

Proof. Let E be the original execution and S be the semantically equivalent
sequential execution. Let t be a quiescent point and consider two operations
g, h with g† < t < h∗. Then we have g < h in S. This is also guaranteed by
linearizability since g† < t < h∗ implies g < h.

13.1. CONSISTENCY MODELS 117

Lemma 13.13. Sequentially consistent and quiescent consistency do not imply
one another.

Proof. There are executions that are sequentially consistent but not quiescently
consistent. An object initially has value 2. We apply two operations to this
object: inc (increment the object by 1) and double (multiply the object by 2).
Assume that inc < double, but inc and double are executed on different nodes.
Then a result of 5 (first double, then inc) is sequentially consistent but not
quiescently consistent.

There are executions that are quiescently consistent but not sequentially
consistent. An object initially has value 2. Assume to have three operations on
two nodes u and v. Node u calls first inc then double, node v calls inc once
with incv∗ < incu† < doubleu∗ < incv† . Since there is no quiescent point, quiescent
consistency is okay with a sequential execution that doubles first, resulting in
((2 · 2) + 1) + 1 = 6. The sequential execution demands that incu < doubleu,
hence the result should be strictly larger than 6 (either 7 or 8).

Definition 13.14. A system or an implementation is called linearizable if it
ensures that every possible execution is linearizable. Analogous definitions exist
for sequential and quiescent consistency.

Remarks:

• In the introductory social media example, a linearizable implementa-
tion would have to make sure that the comment is immediately visible
on any device, as the read operation starts after the write operation
finishes. If the system is only sequentially consistent, the comment
does not need to be immediately visible on every device.

Definition 13.15 (restricted execution). Let E be an execution involving oper-
ations on multiple objects. For some object o we let the restricted execution
E|o be the execution E filtered to only contain operations involving object o.

Definition 13.16. A consistency model is called composable if the following
holds: If for every object o the restricted execution E|o is consistent, then also
E is consistent.

Remarks:

• Composability enables to implement, verify and execute multiple con-
current objects independently.

Lemma 13.17. Sequential consistency is not composable.

Proof. We consider an execution E with two nodes u and v, which operate on
two objects x and y initially set to 0. The operations are as follows: u1 reads
x = 1, u2 writes y := 1, v1 reads y = 1, v2 writes x := 1 with u1 < u2 on node
u and v1 < v2 on node v. It is clear that E|x as well as E|y are sequentially
consistent as the write operations may be before the respective read operations.
In contrast, execution E is not sequentially consistent: Neither u1 nor v1 can
possibly be the initial operation in any correct semantically equivalent sequential
execution S, as that would imply reading 1 when the variable is still 0.

118 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Theorem 13.18. Linearizability is composable.

Proof. Let E be an execution composed of multiple restricted executions E|x.
For any object x there is a sequential execution S|x that is semantically con-
sistent to E|x and in which the operations are ordered according to wall-clock-
linearization points. Let S be the sequential execution ordered according to all
linearization points of all executions E|x. S is semantically equivalent to E as
S|x is semantically equivalent to E|x for all objects x and two object-disjoint
executions cannot interfere. Furthermore, if f† < g∗ in E, then also f• < g• in
E and therefore also f < g in S.

13.2 Logical Clocks

To capture dependencies between nodes in an implementation, we can use logical
clocks. These are supposed to respect the so-called happened-before relation.

Definition 13.19. Let Su be a sequence of operations on some node u and
define “→” to be the happened-before relation on E := S1 ∪ · · · ∪ Sn that
satisfies the following three conditions:

1. If a local operation f occurs before operation g on the same node (f < g),
then f → g.

2. If f is a send operation of one node, and g is the corresponding receive
operation of another node, then f → g.

3. If f, g, h are operations such that f → g and g → h then also f → h.

Remarks:

• If for two distinct operations f, g neither f → g nor g → f , then
we also say f and g are independent and write f ∼ g. Sequential
computations are characterized by→ being a total order, whereas the
computation is entirely concurrent if no operations f, g with f → g
exist.

Definition 13.20 (Happened-before consistency). An execution E is called
happened-before consistent, if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E.

• Whenever f → g for two operations f, g in E, then also f < g in S.

Lemma 13.21. Happened-before consistency = sequential consistency.

Proof. Both consistency models execute all operations of a single node in the se-
quential order. In addition, happened-before consistency also respects messages
between nodes. However, messages are also ordered by sequential consistency
because of semantic equivalence (a receive cannot be before the corresponding
send). Finally, even though transitivity is defined more formally in happened-
before consistency, also sequential consistency respects transitivity.

In addition, sequential consistency orders two operations ou, ov on two dif-
ferent nodes u, v if ov can see a state change caused by ou. Such a state change
does not happen out of the blue, in practice some messages between u and v
(maybe via “shared blackboard” or some other form of communication) will be
involved to communicate the state change.

13.2. LOGICAL CLOCKS 119

Definition 13.22 (Logical clock). A logical clock is a family of functions cu
that map every operation f ∈ E on node u to some logical time cu(f) such that
the happened-before relation → is respected, i.e., for two operations g on node
u and h on node v

g → h =⇒ cu(g) < cv(h).

Definition 13.23. If it additionally holds that cu(g) < cv(h) =⇒ g → h, then
the clock is called a strong logical clock.

Remarks:

• In algorithms we write cu for the current logical time of node u.

• The simplest logical clock is the Lamport clock, given in Algorithm 13.24.
Every message includes a timestamp, such that the receiving node may
update its current logical time.

Algorithm 13.24 Lamport clock

1: (Code for node u)
2: Initialize cu := 0.
3: Upon local operation: Increment current local time cu := cu + 1.
4: Upon send operation: Increment cu := cu+1 and include cu as T in message.

5: Upon receive operation: Extract T from message and update cu :=
max(cu, T) + 1.

Theorem 13.25. Lamport clocks are logical clocks.

Proof. If for two operations f, g it holds that f → g, then according to the
definition three cases are possible.

1. If f < g on the same node u, then cu(f) < cu(g).

2. Let g be a receive operation on node v corresponding to some send oper-
ation f on another node u. We have cv(g) ≥ T + 1 = cu(f) + 1 > cu(f).

3. Transitivity follows with f → g and g → h ⇒ g → h, and the first two
cases.

Remarks:

• Lamport logical clocks are not strong logical clocks, which means we
cannot completely reconstruct → from the family of clocks cu.

• To achieve a strong logical clock, nodes also have to gather informa-
tion about other clocks in the system, i.e., node u needs to have a
idea of node v’s clock, for every u, v. This is what vector clocks in
Algorithm 13.26 do: Each node u stores its knowledge about other
node’s logical clocks in an n-dimensional vector cu.

120 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Algorithm 13.26 Vector clocks

1: (Code for node u)
2: Initialize cu[v] := 0 for all other nodes v.
3: Upon local operation: Increment current local time cu[u] := cu[u] + 1.
4: Upon send operation: Increment cu[u] := cu[u] + 1 and include the whole

vector cu as d in message.
5: Upon receive operation: Extract vector d from message and update cu[v] :=

max(d[v], cu[v]) for all entries v. Increment cu[u] := cu[u] + 1.

Theorem 13.27. Define cu < cv if and only if cu[w] ≤ cv[w] for all entries
w, and cu[x] < cv[x] for at least one entry x. Then the vector clocks are strong
logical clocks.

Proof. We are given two operations f, g, with operation f on node u, and op-
eration g on node v, possibly v = u.

If we have f → g, then there must be a happened-before-path of operations
and messages from f to g. According to Algorithm 13.26, cv(g) must include
at least the values of the vector cu(f), and the value cv(g)[v] > cu(f)[v].

If we do not have f → g, then cv(g)[u] cannot know about cu(f)[u], and
hence cv(g)[u] < cu(f)[u], since cu(f)[u] was incremented when executing f on
node u.

Remarks:

• Usually the number of interacting nodes is small compared to the over-
all number of nodes. Therefore we do not need to send the full length
clock vector, but only a vector containing the entries of the nodes
that are actually communicating. This optimization is the called the
differential technique.

13.3 Consistent Snapshots

Definition 13.28 (cut). A cut is some prefix of a distributed execution. More
precisely, if a cut contains an operation f on some node u, then it also contains
all the preceding operations of u. The set of last operations on every node
included in the cut is called the frontier of the cut.

Definition 13.29 (consistent snapshot). A cut C is a consistent snapshot,
if for every operation g in C with f → g, C also contains f .

Remarks:

• In a consistent snapshot it is forbidden to see an effect without its
cause.

• The number of possible consistent snapshots gives also information
about the degree of concurrency of the system.

13.3. CONSISTENT SNAPSHOTS 121

• One extreme is a sequential computation, where stopping one node
halts the whole system. Let qu be the number of operations on node
u ∈ {1, . . . , n}. Then the number of consistent snapshots (including
the empty cut) in the sequential case is µs := 1 + q1 + q2 + · · ·+ qn.

• One the other hand, in an entirely concurrent computation the nodes
are not dependent on one another and therefore stopping one node
does not impact others. The number of consistent snapshots in this
case is µc := (1 + q1) · (1 + q2) · · · (1 + qn).

Definition 13.30 (measure of concurrency). The concurrency measure of an
execution E = (S1, . . . , Sn) is defined as the ratio

m(E) :=
µ− µs

µc − µs
,

where µ denotes the number of consistent snapshot of E.

Remarks:

• This measure of concurrency is normalized to [0, 1]. F

• In order to evaluate the extent to which a computation is concurrent,
we need to compute the number of consistent snapshots µ. This can
be done via vector clocks.

• Imagine a bank having lots of accounts with transactions all over the
world. The bank wants to make sure that at no point in time money
gets created or destroyed. This is where consistent snapshots come in:
They are supposed to capture the state of the system. Theoretically,
we have already used snapshots when we discussed configurations in
Definition 8.4:

Definition 13.31 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Remarks:

• One application of consistent snapshots is to check if certain invariants
hold in a distributed setting. Other applications include distributed
debugging or determining global states of a distributed system.

• In Algorithm 13.32 we assume that a node can record only its internal
state and the messages it sends and receives. There is no common
clock so it is not possible to just let each node record all information
at precisely the same time.

Theorem 13.33. Algorithm 13.32 collects a consistent snapshot.

122 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Algorithm 13.32 Distributed Snapshot Algorithm

1: Initiator: Save local state, send a snap message to all other nodes and collect
incoming states and messages of all other nodes.

2: All other nodes:
3: Upon receiving a snap message for the first time: send own state (before

message) to the initiator and propagate snap by adding snap tag to future
messages.

4: If afterwards receiving a message m without snap tag: Forward m to the
initiator.

Proof. Let C be the cut induced by the frontier of all states and messages
forwarded to the initiator. For every node u, let tu be the time when u gets
the first snap message m (either by the initiator, or as a message tag). Then C
contains all of u’s operations before tu, and none after tu (also not the message
m which arrives together with the tag at tu).

Assume for the sake of contradiction we have operations f, g on nodes u, v
respectively, with f → g, f /∈ C and g ∈ C, hence tu ≤ f and g < tv. If
u = v we have tu ≤ f < g < tv = tu, which is a contradiction. On the other
hand, if u 6= v: Since tu ≤ f we know that all following send operations must
have included the snap tag. Because of f → g we know there is a path of
messages between f and g, all including the snap tag. So the snap tag must
have been received by node v before or with operation g, hence tv ≤ g, which is
a contradiction to tv > g.

Remarks:

• It may of course happen that a node u sends a message m before
receiving the first snap message at time tu (hence not containing the
snap tag), and this message m is only received by node v after tv.
Such a message m will be reported by v, and is as such included in
the consistent snapshot (as a message that was in transit during the
snapshot).

13.4 Distributed Tracing

Definition 13.34 (Microservice Architecture). A microservice architecture
refers to a system composed of loosely coupled services. These services commu-
nicate by various protocols and are either decentrally coordinated (also known
as “choreography”) or centrally (“orchestration”).

Remarks:

• There is no exact definition for microservices. A rule of thumb is that
you should be able to program a microservice from scratch within two
weeks.

• Microservices are the architecture of choice to implement a cloud based
distributed system, as they allow for different technology stacks, often
also simplifying scalability issues.

13.4. DISTRIBUTED TRACING 123

• In contrast to a monolithic architecture, debugging and optimizing get
trickier as it is difficult to detect which component exactly is causing
problems.

• Due to the often heterogeneous technology, a uniform debugging frame-
work is not feasible.

• Tracing enables tracking the set of services which participate in some
task, and their interactions.

Definition 13.35 (Span). A span s is a named and timed operation represent-
ing a contiguous sequence of operations on one node. A span s has a start time
s∗ and finish time s†.

Remarks:

• Spans represent tasks, like a client submitting a request or a server
processing this request. Spans often trigger several child spans or
forwards the work to another service.

Definition 13.36 (Span Reference). A span may causally depend on other
spans. The two possible relations are ChildOf and FollowsFrom references.
In a ChildOf reference, the parent span depends on the result of the child (the
parents asks the child and the child answers), and therefore parent and child
span must overlap. In FollowsFrom references parent spans do not depend in
any way on the result of their child spans (the parent just invokes the child).

Definition 13.37 (Trace). A trace is a series-parallel directed acyclic graph
representing the hierarchy of spans that are executed to serve some request.
Edges are annotated by the type of the reference, either ChildOf or Follows-
From.

Remarks:

• The advantage of using an open source definition like opentracing
is that it is easy to replace a specific tracing by another one. This
mitigates the lock-in effect that is often experienced when using some
specific technology.

• Algorithm 13.38 shows what is needed if you want to trace requests
to your system.

Algorithm 13.38 Inter-Service Tracing

1: Upon requesting another service: Inject information of current trace and
span (IDs or timing information) into the request header.

2: Upon receiving request from another service: Extract trace and span infor-
mation from the request header and create new span as child span.

124 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Remarks:

• All tracing information is collected and has to be sent to some tracing
backend which stores the traces and usually provides a frontend to
understand what is going on.

• Opentracing implementations are available for the most commonly
used programming frameworks and can therefore be used for hetero-
geneous collections of microservices.

13.5 Mutual Exclusion

When multiple nodes compete for exclusive access to a shared resource, we need
a protocol which coordinates the order in which the resource gets assigned to the
nodes. The most obvious algorithm is letting a leader node organize everything:

Algorithm 13.39 Centralized Mutual Exclusion Algorithm

1: To access shared resource: Send request message to leader and wait for
permission.

2: To release shared resource: Send release message to leader.

Remarks:

• An advantage of Algorithm 13.39 is its simplicity and low message
overhead with 3 messages per access.

• An obvious disadvantage is that the leader is single point of failure
and performance bottleneck. Assuming an asynchronous system, this
protocol also does not achieve first come first serve fairness.

• To eliminate the single bottleneck we pass an access token from node to
node. This token contains the time t of the earliest known outstanding
request.

• We assume a ring of nodes, i.e., there is an order of the nodes given
such that every node knows its successor and predecessor.

Algorithm 13.40 Token-Based Mutual Exclusion Algorithm

1: To access shared resource at time TR: Wait for token containing time t of
earliest known outstanding request.

2: Upon receiving token:
3: if TR = t then
4: Hold token and access shared resource.
5: else if TR > t then
6: Pass on token to next node.
7: else if t = null or TR < t then
8: Set t = TR and pass on token.
9: end if

10: To release access: Set t = null and pass on token.

13.5. MUTUAL EXCLUSION 125

Remarks:

• Algorithm 13.40 achieves in-order fairness if all nodes stick to the
rules.

• One issue is the breakdown if one node does not manage to pass on
the token. In this case some new token has to be created and assigned
to one of the remaining nodes.

• We can get rid of the token, if access to the token gets decided on a
first come first serve basis with respect to logical clocks. This leads to
Algorithm 13.41.

Algorithm 13.41 Distributed Mutual Exclusion Algorithm

1: To access shared resource: Send message to all nodes containing the node
ID and the current timestamp.

2: Upon received request message: If access to the same resource is needed
and the own timestamp is lower than timestamp in received message, defer
response. Otherwise send back a response.

3: Upon responses from all nodes received: enter critical section. Afterwards
send deferred responses.

Remarks:

• The algorithm guarantees mutual exclusion without deadlocks or star-
vation of a requesting process.

• The number of messages per entry is 2(n− 1), where n is the number
of nodes in the system: (n− 1) requests and (n− 1) responses.

• There is no single point of failure. Yet, whenever a node crashes, it
will not reply with a response and the requesting node waits forever.
Eeven worse, the requesting process cannot determine if the silence
is due to the other process currently accessing the shared resource or
crashing. Can we fix this? Indeed: Change step 2 in Algorithm 13.41
such that upon receiving request there will always be an answer, either
Denied or OK. This way crashes will be detected.

Chapter Notes

In his seminal work, Leslie Lamport came up with the happened-before relation
and gave the first logical clock algorithm [Lam78]. This paper also laid the
foundation for the theory of logical clocks. Fidge came some time later up with
vector clocks [JF88]. An obvious drawback of vector clocks is the overhead
caused by including the whole vector. Can we do better? In general, we cannot
if we need strong logical clocks [CB91].

Lamport also introduced the algorithm for distributed snapshots, together
with Chandy [CL85]. Besides this very basic algorithm, there exist several other
algorithms, e.g., [LY87], [SK86].

126 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Throughout the literature the definitions for, e.g., consistency or atomicity
slightly differ. These concepts are studied in different communities, e.g., lin-
earizability hails from the distributed systems community whereas the notion
of serializability was first treated by the database community. As the two areas
converged, the terminology got overloaded.

Our definitions for distributed tracing follow the OpenTracing API 1. The
opentracing API only gives high-level definitions of how a tracing system is sup-
posed to work. Only the implementation specifies how it works internally.There
are several systems that implement these generic definitions, like Uber’s open
source tracer called Jaeger, or Zipkin, which was first developed by Twitter.
This technology is relevant for the growing number of companies that embrace
a microservice architecture. Netflix for example has a growing number of over
1,000 microservices.

This chapter was written in collaboration with Julian Steger.

Bibliography

[CB91] Bernadette Charron-Bost. Concerning the size of logical clocks in dis-
tributed systems. Inf. Process. Lett., 39(1):11–16, July 1991.

[CL85] K Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. 3:63–75, 02 1985.

[JF88] Colin J. Fidge. Timestamps in message-passing systems that preserve
partial ordering. 10:56–66, 02 1988.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distrib-
uted system. Commun. ACM, 21(7):558–565, jul 1978.

[LY87] Ten H. Lai and Tao H. Yang. On distributed snapshots. Information
Processing Letters, 25(3):153 – 158, 1987.

[SK86] Madalene Spezialetti and Phil Kearns. Efficient distributed snapshots.
In ICDCS, pages 382–388. IEEE Computer Society, 1986.

1http://opentracing.io/documentation/

