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Petri Nets – Motivation

• In contrast to state machines, state transitions in Petri nets are asynchronous. The 
ordering of transitions is partly uncoordinated; it is specified by a partial order. 

• Therefore, Petri nets can be used to model concurrent distributed systems.

• Many flavors of Petri nets are in use, e.g. 
• Activity charts (UML)
• Data flow graphs and marked graphs
• GRAFCET (programming language for programming logic controllers)
• Specialized languages for workflow management and business processes

• Invented by Carl Adam Petri in 1962 in his thesis “Kommunikation mit Automaten”
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Petri Net – Definition

• A Petri net is a bipartite, directed graph defined by a 4-tuple 
(S, T, F, M0), where:

• S is a set of places p
• T is a set of transitions t
• F is a set of edges (flow relations) f, no

parallel edges are allowed
• M0 : S → N; the initial marking

p1 p3

p5 p4

p2

•t1 •t2

t1, t2 ∈ T
p1, p2, p3, p4, p5 ∈ S

p1, t1 , p2, t1 , t1, p5 , … ∈ F
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Token Marking

• Each place pi is marked with a certain number of token.

• The initial distribution of the tokens is given by M0 .

• M(s) denotes the marking of a place s.

• The distribution of tokens on places defines the state of 
a Petri net.

• The dynamics of a Petri net is defined by a token game.

p1

p2

•t1
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Token Game of Petri Nets

• A marking M activates a transition t ∈ T if each place p connected through an edge 
f towards t contains at least one token.

• If a transition t is activated by M, a state transition to M’ fires (happens) 
eventually.

• Only one transition is fired at any time.
• When a transition fires, it

• consumes a token from each of its input places,
• adds a token to each of its output places.

p3 p4

p1 p2

•t1

p3 p4

p1 p2

•t1•t1 fires
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Non-Deterministic Evolution

• Any of the activated transactions might fire:

The evolution of Petri nets is not deterministic.

p3 p4

p1 p2

•t1•t2

p3 p4

p1 p2

•t1•t2

p3 p4

p1 p2

•t1•t2

•t2 •t1
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Syntax Exercise (1)

•A •B •C •D •E

•F •G •H •I

• Is it a valid Petri Net?     
• Which transitions 

are activated?
• What is the  marking 

after firing?
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Syntax Exercise (2)

•J •K

•L

•t2•t1

• Is it a valid Petri Net?     
• Which transitions 

are activated?
• What is the  marking 

after firing?

•t1 •t2 •t3
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Weighted Edges

• Associating weights to edges:
• Each edge f has an associated weight W(f) (defaults to 1).
• A transition t is activated if each place p connected through an edge f to t contains at least 

W(f) token.
• When transition t fires, then W(f) token are transferred. 

H2 O2

chemical reaction
2 H2 + O2 → 2H2O

2

2

H2O

H2 O2

2

2

H2O
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State Transition Function

• Using the previous definitions, we can now define the state transitions function δ
of a Petri net:
• Suppose that in a given Petri net (S, T, F, W, M0) the 

transition t is activated. Before firing the marking is M. 
• Then after firing t, the new marking is M’ = δ(M, t) with

• We also write sometimes M’ = M · t instead of M’ = δ(M, t).

M(p) – W(p, t) if (p, t) ϵ F and (t, p) ϵ F 
M(p) + W(t, p) if (t, p) ϵ F and (p, t) ϵ F 
M(p) – W(p, t) + W(t, p) if (t, p) ϵ F and (p, t) ϵ F 
M(p) otherwise

M’(p) = 
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Finite Capacity Petri Net

• Each place p can hold maximally K(p) token.
• A transition t is only active if all output places pi of t cannot exceed K(pi) after 

firing t. 

• Finite capacity Petri Nets can be transformed into equivalent infinite capacity Petri 
Nets (without capacity restrictions).

• Equivalence: Both nets have the same set of all possible firing sequences

p1

p2 K(2)=1

t1

t2

p1

p2 K(2)=1

t1

t2

p1

p2 K(2)=1

t1

t2

t1

•t2
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Removing Capacity Constraints

• For each place p with K(p) > 1, add a complementary place p’ with initial marking 
M0(p’) = K(p) – M0(p).

• For each outgoing edge f = (p, t), add an edge f’ from t to p’ with weight W(f).
• For each incoming edge f = (t, p), add an edge f’ from p’ to t with weight W(f).

p1

p2 K(2)=3

t1

t2

p1

p2

t1

t2

p2’

2 2

2

•remove capacity
•constraint



14

Your turn!

• Remove the capacity constraint from place p3:

p2

p3
•K(3)=3

t2

t3

p1

p4

t4

t1

t5

2
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Your turn!

• Remove the capacity constraint from place p3:

p2

p3
•K(3)=3

t2

t3

p1

p4

t4

t1

t5

2

p2

p3

t2

t3

p1

p4

t4

t1

t5

2 p3’

•2
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Modeling Finite Automata 

• Finite automata can be represented by a subclass of Petri nets, where each 
transition has exactly one incoming edge and one outgoing edge.

• Such Petri nets are also called state machines.
• Coke vending machine revisited:

p1

p2

p4

p5

D

•Q

Q

p3

•D

p4

•D|Q

•Q

D
p6

D

Q D

p4

Q

D|Q

Soda

10 ¢

40 ¢

30 ¢20 ¢

≥ 45 ¢

35 ¢

25 ¢

• Coke costs 45 ¢.
• Customer pays with 

Dime (10 ¢) or 
Quarter (25 ¢).

• Overpaid money is lost.



17

Concurrent Activities

• Finite Automata allow the representation of decisions, but no concurrency.
• General Petri nets support concurrency with intuitive notation:

•decision / conflict •fork •join / synchronization

concurrencydecision
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Petri Net Languages

• Transitions are labeled with (not necessarily distinct) symbols.
• Final state is reached if no transition is activated.
• Any sequence of firing generates a string of symbols, i.e. a word of the language.

• Every finite-state machine can be modeled by a Petri net.

ε ε ε

a b c
L(M0) = ??

Every regular language is a Petri net language.
Not every Petri net language is regular.



19

Petri Net Languages

• Transitions are labeled with (not necessarily distinct) symbols.
• Final state is reached if no transition is activated.
• Any sequence of firing generates a string of symbols, i.e. a word of the language.

• Every finite-state machine can be modeled by a Petri net.

ε ε ε

a b c
L(M0) = {an bm cm | n ≥ m ≥ 0 }

Every regular language is a Petri net language.
Not every Petri net language is regular.
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Common Extensions

• Colored Petri nets: Tokens carry values (colors).
Any Petri net with finite number of colors can be transformed into a regular Petri net.

• Continuous Petri nets: The number of tokens can be a real number (not only an 
integer).
• Cannot be transformed into a regular Petri net.

• Inhibitor Arcs: Enable a transition if a place contains no tokens.
• Cannot be transformed to a regular Petri net

• Timed Petri nets: See later … 

•ε •ε •ε

•a •b •c
L(M0) = {an bn cn | n ≥ 0 }
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Behavioral Properties (1)

Reachability
A marking Mn is reachable from M0 iff there exists a sequence of firings 
{t1, t2, … tn} such that Mn = M0 · t1 · t2 · … · tn

K-Boundedness
A Petri net is K-bounded if the number of tokens in every place never exceeds K. 
The number of states is finite in this case.

Safety
1-Boundedness: Every node holds at most 1 token at any time.
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Behavioral Properties (2)

Liveness
A transition t in a Petri net is

dead iff t cannot be fired in any firing sequence,
L1-live  iff t can be fired at least once in some firing sequence,
L2-live  iff, ∀ k ∈ N+, t can be fired at least k times in some firing sequence,
L3-live iff t appears infinitely often in some infinite firing sequence,

L4-live (live) iff t is L1-live for every marking that is reachable from M0 .

Lj+1-liveness implies Lj-liveness.

A Petri net is free of deadlocks iff there is no reachable marking from M0 in which 
all transitions are dead.
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Liveness Examples

p1

p2

t1

t2

p3

p1

p2

p3

t1

t2
t3

t3
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Liveness Examples

p1

p2

t1

t2

p3

p1

p2

p3

t1

t2
t3

t3

Every transition is L4-live.
The Petri net is free of deadlocks.

t1 is L3-live.
t2 is L2-live.
t3 is L1-live.
The Petri net is not free of deadlocks.
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Analysis Methods

Coverability tree
Enumeration of all reachable markings, limited to small nets if done by explicit 
enumeration. Reachability analysis similar to that of finite automata can be done 
if the net is bounded.

Incidence Matrix
Describes the token-flow and state evolution by a set of linear equations. This 
method allows to derive necessary but not sufficient conditions for reachability.
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Coverability Tree

• Question: What token distributions are reachable?
• Problem: There might be infinitely many reachable markings, but we must avoid 

an infinite tree.
• Solution: Introduce a special symbol ω to denote an arbitrary number of tokens:

p2

t3

t2

p1

p3

t1
t0

M0 = [1 0 0]

M1 = [0 0 1]

t1 t3

M3 = [1 ω 0]

M4 = [0 ω 1]

t2

M5 = [0 ω 1]

t1 t3
•M6 = [1 ω 0]

deadlock

old

old
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Coverability Tree – Algorithm

Special symbol ω, similar to ∞: ∀n∈N: ω > n; ω = ω ± n; ω ≥ ω

• Label initial marking M0 as root and tag it as new
• while new markings exist, pick one, say M

• Remove marking from M;
• If M is identical to an already existing marking, mark it as old; continue;
• If no transitions are enabled at M, tag it as deadlock; continue;
• For each enabled transition t at M do

• Obtain marking M' = M · t
• If there exists a marking M'' on the way from the root to M s.t. M'(p) ≥ M''(p) for 

each place p and M' ≠ M'', replace M'(p) with ω for p where M'(p) > M''(p).
• Introduce M' as a node, draw an arc with label t from M to M' and tag M' new. 
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Results from the Coverability Tree T

• The net is bounded iff ω does not appear in any node label of T

• The net is safe iff only ‘0’ and ‘1’ appear in the node labels of T

• A transition t is dead iff it does not appear as an arc in T

• If M is reachable from M0, then there exists a node M' s.t. M ≤ M'. This is a 
necessary, but not sufficient condition for reachability.

• For bounded Petri nets, the coverability tree T does not contain ω and is also 
called reachability tree, as all reachable markings are contained in it.

•3/3
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Incidence Matrix

• Method: Describe a Petri net through a set of linear equations.
• The (m × n) incidence matrix A describes the token-flow for a Petri net with n 

transitions and m places.
• The matrix element Aij corresponds to the “gain” of tokens at place pi when transition 

tj ≤ fires. In other words, Aij = W(tj , pi) - W(pi , tj). Here, we set W(p,t) = 0 or W(t, p)=0 
when the corresponding edges do not exist.

• A marking M is written as a m × 1 column vector:

p1

t2
p2

t3

p3

p4

t1

2

2
2
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Incidence Matrix

• Method: Describe a Petri net through a set of linear equations.
• The (m × n) incidence matrix A describes the token-flow for a Petri net with n 

transitions and m places.
• The matrix element Aij corresponds to the “gain” of tokens at place pi when transition 

tj ≤ fires. In other words, Aij = W(tj , pi) - W(pi , tj). Here, we set W(p,t) = 0 or W(t, p)=0 
when the corresponding edges do not exist.

• A marking M is written as a m × 1 column vector:

p1

t2
p2

t3

p3

p4

t1

2

2
2
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State Equation

• The firing vector u describes the firing of a transition t. 
If transition ti fires, then ui consists of all ‘0’, except for 
the i-th row, where it has a ‘1’:

𝑢𝑢1 =
1
0
0

𝑢𝑢2=
0
1
0

𝑢𝑢3=
0
0
1

• A state transition from M to M’ due to firing ti is written as 
M’ = δ(M, ti) = M + A · ui

• For example, M1 is obtained from M0 by firing t3:

•t3
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State Equation: Reachability

• A marking Mk is reachable from M0 if there is a 
sequence σ of k transitions {tσ[1], tσ[2], …, tσ[k]} 
such that Mk = M0 · tσ[1] · tσ[2] · … · tσ[k].

• Expressed with the incidence matrix:

which can be rewritten as

If Mk is reachable from M0, equation (2) must have a solution where all 
components of x are non-negative integers. This is a necessary but not sufficient 
condition for reachability.

(1)

(2)



36

Reachability - Example

• Is                         reachable? 

• Is                        reachable? 
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Reachability - Example

• Is                         reachable? Possibly yes as

and                                          with                   .

It is reachable as the sequence {t1, t3, t3, t2} reaches Mk .

• Is                      reachable? No, as there is no solution to

with                             . 
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Discrete Event Models with Time

• In most of the discrete event systems, time is an important factor, for example 
queuing systems, computer systems, digital circuits, workflow management, 
business processes.

• Based on a timed discrete event model we would like to determine properties 
like delay, throughput,  execution rate, resource load and buffer sizes.

• There are many ways of adding the concept of time to finite automata and Petri 
nets. In the following, one specific model is used.

• What can you do with it?
• Verifying timed properties (How long does it take at most until a certain event 

happens? What is the minimum time between two events?).
• Simulate a timed discrete event model (Given a specific input, how does the system 

state evolve over time? Is the resulting trace of execution what we had in mind?).
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Timed Petri Net

• We define a delay function d: T → R that determines for each transition t a delay
between its activation and firing.
• If called, the function d(t) returns a delay for the current activation. Repeated calls 

may lead to the same value (constant delay) or to different delays, e.g. by returning 
the value of a random variable.

• The function is called for every new activation of transition t and determines the time 
until the transition fires. There is a new activation whenever a token is removed from 
some input place of t.

• If the transition t loses its activation, then at the next activation d(t) is called again.
• Only one transition fires at a time; in case of two activations with the same firing time, 

one of them is chosen non-deterministically to fire first.
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Timed Petri Net

Example traces: t1

t2

t3

t4firing time
of t4

d(t1)
d(t2)

firing time of t1;
t1, t2 lose activation

firing times
of t4

d(t1)

d(t2)

firing time of t3;
t1 loses activation;
t1 activated again

d(t1)

firing time of t2;
t1, t2 lose activation;
t1, t2 activated again

firing time of t1;
t1, t2 lose activation

d(t1)

time

time
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Time Petri Net

• The time when a transition t fires is called its firing time. 
• A timed Petri net can be regarded as a generator for firing times of its transitions.

• How do we get the firing times? By simulation!

d(t1) = 1

d(t2) = 2

d(t3) = 3

{1, 6, 9, 12, …}

{5, 8, 11, 13, …}

{3, 6,  9, 12, …}

firing time sequences for transitions t1, t2 and t3initialization time 0

t1

t2

t3
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Time Petri Net

Example Continuous Time Markov Chain:

t1

t2

d(t1) returns a sample of an exponentially 
distributed random variable with parameter λ

d(t2) returns a sample of an exponentially 
distributed random variable with parameter μ
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Timed Petri Net – Simulation Principle

• The simulation is based on the following basic principles.
1. The simulator maintains a set L of currently activated transitions and their firing 

times. (We call L the event list from now on.)
2. A transition with the earliest firing time is selected and fired. The state of the Petri 

net as well as the current simulation time is updated accordingly.
3. All transitions that lost their activation during the state transition are removed from 

the event list L.
4. Afterwards, all transitions that are newly activated are added in the event list L 

together with their firing times. 
5. Then we continue with 2. unless the event list L is empty.

• This simulation principle holds in one form or the other for any simulator of timed 
discrete event models.
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Timed Petri Net – Simulation Principle

initialize event list L, current state M and current simulation time τ 

state M

update state
M := M + A u’

remove transitions
that lost their activation
during state transition

remove transition t’ with
the earliest firing time τ’

update 
current 

simulation 
time to τ := τ’

add transitions
that are newly activated
during state transition

event list L
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Timed Petri Net – Simulation Steps

• Initialization:
• set the initial simulation time τ := 0
• set the current state to M := M0

• for each activated transition t, add the event (t, τ + d(t)) to the event list L

• Determine and remove current event:
• determine a firing event (t’, τ’) with the earliest firing time: 

• remove event (t’, τ’) from the event list L:
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Timed Petri Net – Simulation Steps

• Update current simulation time:
• set current simulation time τ := τ’

• Update token distribution M
• suppose that the firing transition has index j, i.e. tj = t’. Then, the firing vector is

• update current state M := M + A u’

j



49

Timed Petri Net – Simulation Steps

• Remove transitions from L that lost activation:
• determine the set of places S’ from which at least one token was 

removed during the state transition caused by t’:

• remove from event list L all transitions in T’ 
that lost their activation due to this token removal:

• Add all transitions to event list L that are activated but not in L yet:
• if some transition t with                            for all                   is not in event list L, then add

to the event list L:   

t1

t2

t3

t4
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Petri Net Simulators

• There are many simulators available, see e.g.
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://cpntools.org/
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