
Computer Engineering and Networks
Technische Informatik und Kommunikationsnetze

Discrete Event Systems
- Petri Nets –

Lothar Thiele

2

Petri Nets – Motivation

• In contrast to state machines, state transitions in Petri nets are asynchronous. The
ordering of transitions is partly uncoordinated; it is specified by a partial order.

• Therefore, Petri nets can be used to model concurrent distributed systems.

• Many flavors of Petri nets are in use, e.g.
• Activity charts (UML)
• Data flow graphs and marked graphs
• GRAFCET (programming language for programming logic controllers)
• Specialized languages for workflow management and business processes

• Invented by Carl Adam Petri in 1962 in his thesis “Kommunikation mit Automaten”

3

Contents

• Definition of Petri nets

• Properties of Petri nets

• Analysis of Petri nets
• Coverability Tree
• Incidence Matrix

• Timed Petri nets
• Definition
• Simulation

4

Petri Net – Definition

• A Petri net is a bipartite, directed graph defined by a 4-tuple
(S, T, F, M0), where:

• S is a set of places p
• T is a set of transitions t
• F is a set of edges (flow relations) f, no

parallel edges are allowed
• M0 : S → N; the initial marking

p1 p3

p5 p4

p2

•t1 •t2

t1, t2 ∈ T
p1, p2, p3, p4, p5 ∈ S

p1, t1 , p2, t1 , t1, p5 , … ∈ F

5

Token Marking

• Each place pi is marked with a certain number of token.

• The initial distribution of the tokens is given by M0 .

• M(s) denotes the marking of a place s.

• The distribution of tokens on places defines the state of
a Petri net.

• The dynamics of a Petri net is defined by a token game.

p1

p2

•t1

6

Token Game of Petri Nets

• A marking M activates a transition t ∈ T if each place p connected through an edge
f towards t contains at least one token.

• If a transition t is activated by M, a state transition to M’ fires (happens)
eventually.

• Only one transition is fired at any time.
• When a transition fires, it

• consumes a token from each of its input places,
• adds a token to each of its output places.

p3 p4

p1 p2

•t1

p3 p4

p1 p2

•t1•t1 fires

7

Non-Deterministic Evolution

• Any of the activated transactions might fire:

The evolution of Petri nets is not deterministic.

p3 p4

p1 p2

•t1•t2

p3 p4

p1 p2

•t1•t2

p3 p4

p1 p2

•t1•t2

•t2 •t1

8

Syntax Exercise (1)

•A •B •C •D •E

•F •G •H •I

• Is it a valid Petri Net?
• Which transitions

are activated?
• What is the marking

after firing?

9

Syntax Exercise (2)

•J •K

•L

•t2•t1

• Is it a valid Petri Net?
• Which transitions

are activated?
• What is the marking

after firing?

•t1 •t2 •t3

10

Weighted Edges

• Associating weights to edges:
• Each edge f has an associated weight W(f) (defaults to 1).
• A transition t is activated if each place p connected through an edge f to t contains at least

W(f) token.
• When transition t fires, then W(f) token are transferred.

H2 O2

chemical reaction
2 H2 + O2 → 2H2O

2

2

H2O

H2 O2

2

2

H2O

11

State Transition Function

• Using the previous definitions, we can now define the state transitions function δ
of a Petri net:
• Suppose that in a given Petri net (S, T, F, W, M0) the

transition t is activated. Before firing the marking is M.
• Then after firing t, the new marking is M’ = δ(M, t) with

• We also write sometimes M’ = M · t instead of M’ = δ(M, t).

M(p) – W(p, t) if (p, t) ϵ F and (t, p) ϵ F
M(p) + W(t, p) if (t, p) ϵ F and (p, t) ϵ F
M(p) – W(p, t) + W(t, p) if (t, p) ϵ F and (p, t) ϵ F
M(p) otherwise

M’(p) =

12

Finite Capacity Petri Net

• Each place p can hold maximally K(p) token.
• A transition t is only active if all output places pi of t cannot exceed K(pi) after

firing t.

• Finite capacity Petri Nets can be transformed into equivalent infinite capacity Petri
Nets (without capacity restrictions).

• Equivalence: Both nets have the same set of all possible firing sequences

p1

p2 K(2)=1

t1

t2

p1

p2 K(2)=1

t1

t2

p1

p2 K(2)=1

t1

t2

t1

•t2

13

Removing Capacity Constraints

• For each place p with K(p) > 1, add a complementary place p’ with initial marking
M0(p’) = K(p) – M0(p).

• For each outgoing edge f = (p, t), add an edge f’ from t to p’ with weight W(f).
• For each incoming edge f = (t, p), add an edge f’ from p’ to t with weight W(f).

p1

p2 K(2)=3

t1

t2

p1

p2

t1

t2

p2’

2 2

2

•remove capacity
•constraint

14

Your turn!

• Remove the capacity constraint from place p3:

p2

p3
•K(3)=3

t2

t3

p1

p4

t4

t1

t5

2

15

Your turn!

• Remove the capacity constraint from place p3:

p2

p3
•K(3)=3

t2

t3

p1

p4

t4

t1

t5

2

p2

p3

t2

t3

p1

p4

t4

t1

t5

2 p3’

•2

16

Modeling Finite Automata

• Finite automata can be represented by a subclass of Petri nets, where each
transition has exactly one incoming edge and one outgoing edge.

• Such Petri nets are also called state machines.
• Coke vending machine revisited:

p1

p2

p4

p5

D

•Q

Q

p3

•D

p4

•D|Q

•Q

D
p6

D

Q D

p4

Q

D|Q

Soda

10 ¢

40 ¢

30 ¢20 ¢

≥ 45 ¢

35 ¢

25 ¢

• Coke costs 45 ¢.
• Customer pays with

Dime (10 ¢) or
Quarter (25 ¢).

• Overpaid money is lost.

17

Concurrent Activities

• Finite Automata allow the representation of decisions, but no concurrency.
• General Petri nets support concurrency with intuitive notation:

•decision / conflict •fork •join / synchronization

concurrencydecision

18

Petri Net Languages

• Transitions are labeled with (not necessarily distinct) symbols.
• Final state is reached if no transition is activated.
• Any sequence of firing generates a string of symbols, i.e. a word of the language.

• Every finite-state machine can be modeled by a Petri net.

ε ε ε

a b c
L(M0) = ??

Every regular language is a Petri net language.
Not every Petri net language is regular.

19

Petri Net Languages

• Transitions are labeled with (not necessarily distinct) symbols.
• Final state is reached if no transition is activated.
• Any sequence of firing generates a string of symbols, i.e. a word of the language.

• Every finite-state machine can be modeled by a Petri net.

ε ε ε

a b c
L(M0) = {an bm cm | n ≥ m ≥ 0 }

Every regular language is a Petri net language.
Not every Petri net language is regular.

20

Common Extensions

• Colored Petri nets: Tokens carry values (colors).
Any Petri net with finite number of colors can be transformed into a regular Petri net.

• Continuous Petri nets: The number of tokens can be a real number (not only an
integer).
• Cannot be transformed into a regular Petri net.

• Inhibitor Arcs: Enable a transition if a place contains no tokens.
• Cannot be transformed to a regular Petri net

• Timed Petri nets: See later …

•ε •ε •ε

•a •b •c
L(M0) = {an bn cn | n ≥ 0 }

21

Contents

• Definition of Petri nets

• Properties of Petri nets

• Analysis of Petri nets
• Coverability Tree
• Incidence Matrix

• Timed Petri nets
• Definition
• Simulation

22

Behavioral Properties (1)

Reachability
A marking Mn is reachable from M0 iff there exists a sequence of firings
{t1, t2, … tn} such that Mn = M0 · t1 · t2 · … · tn

K-Boundedness
A Petri net is K-bounded if the number of tokens in every place never exceeds K.
The number of states is finite in this case.

Safety
1-Boundedness: Every node holds at most 1 token at any time.

23

Behavioral Properties (2)

Liveness
A transition t in a Petri net is

dead iff t cannot be fired in any firing sequence,
L1-live iff t can be fired at least once in some firing sequence,
L2-live iff, ∀ k ∈ N+, t can be fired at least k times in some firing sequence,
L3-live iff t appears infinitely often in some infinite firing sequence,

L4-live (live) iff t is L1-live for every marking that is reachable from M0 .

Lj+1-liveness implies Lj-liveness.

A Petri net is free of deadlocks iff there is no reachable marking from M0 in which
all transitions are dead.

24

Liveness Examples

p1

p2

t1

t2

p3

p1

p2

p3

t1

t2
t3

t3

25

Liveness Examples

p1

p2

t1

t2

p3

p1

p2

p3

t1

t2
t3

t3

Every transition is L4-live.
The Petri net is free of deadlocks.

t1 is L3-live.
t2 is L2-live.
t3 is L1-live.
The Petri net is not free of deadlocks.

26

Contents

• Definition of Petri nets

• Properties of Petri nets

• Analysis of Petri nets
• Coverability Tree
• Incidence Matrix

• Timed Petri nets
• Definition
• Simulation

27

Analysis Methods

Coverability tree
Enumeration of all reachable markings, limited to small nets if done by explicit
enumeration. Reachability analysis similar to that of finite automata can be done
if the net is bounded.

Incidence Matrix
Describes the token-flow and state evolution by a set of linear equations. This
method allows to derive necessary but not sufficient conditions for reachability.

28

Coverability Tree

• Question: What token distributions are reachable?
• Problem: There might be infinitely many reachable markings, but we must avoid

an infinite tree.
• Solution: Introduce a special symbol ω to denote an arbitrary number of tokens:

p2

t3

t2

p1

p3

t1
t0

M0 = [1 0 0]

M1 = [0 0 1]

t1 t3

M3 = [1 ω 0]

M4 = [0 ω 1]

t2

M5 = [0 ω 1]

t1 t3
•M6 = [1 ω 0]

deadlock

old

old

29

Coverability Tree – Algorithm

Special symbol ω, similar to ∞: ∀n∈N: ω > n; ω = ω ± n; ω ≥ ω

• Label initial marking M0 as root and tag it as new
• while new markings exist, pick one, say M

• Remove marking from M;
• If M is identical to an already existing marking, mark it as old; continue;
• If no transitions are enabled at M, tag it as deadlock; continue;
• For each enabled transition t at M do

• Obtain marking M' = M · t
• If there exists a marking M'' on the way from the root to M s.t. M'(p) ≥ M''(p) for

each place p and M' ≠ M'', replace M'(p) with ω for p where M'(p) > M''(p).
• Introduce M' as a node, draw an arc with label t from M to M' and tag M' new.

30

Results from the Coverability Tree T

• The net is bounded iff ω does not appear in any node label of T

• The net is safe iff only ‘0’ and ‘1’ appear in the node labels of T

• A transition t is dead iff it does not appear as an arc in T

• If M is reachable from M0, then there exists a node M' s.t. M ≤ M'. This is a
necessary, but not sufficient condition for reachability.

• For bounded Petri nets, the coverability tree T does not contain ω and is also
called reachability tree, as all reachable markings are contained in it.

•3/3

31

Contents

• Definition of Petri nets

• Properties of Petri nets

• Analysis of Petri nets
• Coverability Tree
• Incidence Matrix

• Timed Petri nets
• Definition
• Simulation

32

Incidence Matrix

• Method: Describe a Petri net through a set of linear equations.
• The (m × n) incidence matrix A describes the token-flow for a Petri net with n

transitions and m places.
• The matrix element Aij corresponds to the “gain” of tokens at place pi when transition

tj ≤ fires. In other words, Aij = W(tj , pi) - W(pi , tj). Here, we set W(p,t) = 0 or W(t, p)=0
when the corresponding edges do not exist.

• A marking M is written as a m × 1 column vector:

p1

t2
p2

t3

p3

p4

t1

2

2
2

33

Incidence Matrix

• Method: Describe a Petri net through a set of linear equations.
• The (m × n) incidence matrix A describes the token-flow for a Petri net with n

transitions and m places.
• The matrix element Aij corresponds to the “gain” of tokens at place pi when transition

tj ≤ fires. In other words, Aij = W(tj , pi) - W(pi , tj). Here, we set W(p,t) = 0 or W(t, p)=0
when the corresponding edges do not exist.

• A marking M is written as a m × 1 column vector:

p1

t2
p2

t3

p3

p4

t1

2

2
2

34

State Equation

• The firing vector u describes the firing of a transition t.
If transition ti fires, then ui consists of all ‘0’, except for
the i-th row, where it has a ‘1’:

𝑢𝑢1 =
1
0
0

𝑢𝑢2=
0
1
0

𝑢𝑢3=
0
0
1

• A state transition from M to M’ due to firing ti is written as
M’ = δ(M, ti) = M + A · ui

• For example, M1 is obtained from M0 by firing t3:

•t3

35

State Equation: Reachability

• A marking Mk is reachable from M0 if there is a
sequence σ of k transitions {tσ[1], tσ[2], …, tσ[k]}
such that Mk = M0 · tσ[1] · tσ[2] · … · tσ[k].

• Expressed with the incidence matrix:

which can be rewritten as

If Mk is reachable from M0, equation (2) must have a solution where all
components of x are non-negative integers. This is a necessary but not sufficient
condition for reachability.

(1)

(2)

36

Reachability - Example

• Is reachable?

• Is reachable?

37

Reachability - Example

• Is reachable? Possibly yes as

and with .

It is reachable as the sequence {t1, t3, t3, t2} reaches Mk .

• Is reachable? No, as there is no solution to

with .

38

Contents

• Definition of Petri nets

• Properties of Petri nets

• Analysis of Petri nets
• Coverability Tree
• Incidence Matrix

• Timed Petri nets
• Definition
• Simulation

39

Discrete Event Models with Time

• In most of the discrete event systems, time is an important factor, for example
queuing systems, computer systems, digital circuits, workflow management,
business processes.

• Based on a timed discrete event model we would like to determine properties
like delay, throughput, execution rate, resource load and buffer sizes.

• There are many ways of adding the concept of time to finite automata and Petri
nets. In the following, one specific model is used.

• What can you do with it?
• Verifying timed properties (How long does it take at most until a certain event

happens? What is the minimum time between two events?).
• Simulate a timed discrete event model (Given a specific input, how does the system

state evolve over time? Is the resulting trace of execution what we had in mind?).

40

Timed Petri Net

• We define a delay function d: T → R that determines for each transition t a delay
between its activation and firing.
• If called, the function d(t) returns a delay for the current activation. Repeated calls

may lead to the same value (constant delay) or to different delays, e.g. by returning
the value of a random variable.

• The function is called for every new activation of transition t and determines the time
until the transition fires. There is a new activation whenever a token is removed from
some input place of t.

• If the transition t loses its activation, then at the next activation d(t) is called again.
• Only one transition fires at a time; in case of two activations with the same firing time,

one of them is chosen non-deterministically to fire first.

41

Timed Petri Net

Example traces: t1

t2

t3

t4firing time
of t4

d(t1)
d(t2)

firing time of t1;
t1, t2 lose activation

firing times
of t4

d(t1)

d(t2)

firing time of t3;
t1 loses activation;
t1 activated again

d(t1)

firing time of t2;
t1, t2 lose activation;
t1, t2 activated again

firing time of t1;
t1, t2 lose activation

d(t1)

time

time

42

Time Petri Net

• The time when a transition t fires is called its firing time.
• A timed Petri net can be regarded as a generator for firing times of its transitions.

• How do we get the firing times? By simulation!

d(t1) = 1

d(t2) = 2

d(t3) = 3

{1, 6, 9, 12, …}

{5, 8, 11, 13, …}

{3, 6, 9, 12, …}

firing time sequences for transitions t1, t2 and t3initialization time 0

t1

t2

t3

43

Time Petri Net

Example Continuous Time Markov Chain:

t1

t2

d(t1) returns a sample of an exponentially
distributed random variable with parameter λ

d(t2) returns a sample of an exponentially
distributed random variable with parameter μ

44

Contents

• Definition of Petri nets

• Properties of Petri nets

• Analysis of Petri nets
• Coverability Tree
• Incidence Matrix

• Timed Petri nets
• Definition
• Simulation

45

Timed Petri Net – Simulation Principle

• The simulation is based on the following basic principles.
1. The simulator maintains a set L of currently activated transitions and their firing

times. (We call L the event list from now on.)
2. A transition with the earliest firing time is selected and fired. The state of the Petri

net as well as the current simulation time is updated accordingly.
3. All transitions that lost their activation during the state transition are removed from

the event list L.
4. Afterwards, all transitions that are newly activated are added in the event list L

together with their firing times.
5. Then we continue with 2. unless the event list L is empty.

• This simulation principle holds in one form or the other for any simulator of timed
discrete event models.

46

Timed Petri Net – Simulation Principle

initialize event list L, current state M and current simulation time τ

state M

update state
M := M + A u’

remove transitions
that lost their activation
during state transition

remove transition t’ with
the earliest firing time τ’

update
current

simulation
time to τ := τ’

add transitions
that are newly activated
during state transition

event list L

47

Timed Petri Net – Simulation Steps

• Initialization:
• set the initial simulation time τ := 0
• set the current state to M := M0

• for each activated transition t, add the event (t, τ + d(t)) to the event list L

• Determine and remove current event:
• determine a firing event (t’, τ’) with the earliest firing time:

• remove event (t’, τ’) from the event list L:

48

Timed Petri Net – Simulation Steps

• Update current simulation time:
• set current simulation time τ := τ’

• Update token distribution M
• suppose that the firing transition has index j, i.e. tj = t’. Then, the firing vector is

• update current state M := M + A u’

j

49

Timed Petri Net – Simulation Steps

• Remove transitions from L that lost activation:
• determine the set of places S’ from which at least one token was

removed during the state transition caused by t’:

• remove from event list L all transitions in T’
that lost their activation due to this token removal:

• Add all transitions to event list L that are activated but not in L yet:
• if some transition t with for all is not in event list L, then add

to the event list L:

t1

t2

t3

t4

50

Petri Net Simulators

• There are many simulators available, see e.g.
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://cpntools.org/

	Discrete Event Systems�- Petri Nets –��Lothar Thiele
	Petri Nets – Motivation
	Contents
	Petri Net – Definition
	Token Marking
	Token Game of Petri Nets
	Non-Deterministic Evolution
	Syntax Exercise (1)
	Syntax Exercise (2)
	Weighted Edges
	State Transition Function
	Finite Capacity Petri Net
	Removing Capacity Constraints
	Your turn!
	Your turn!
	Modeling Finite Automata
	Concurrent Activities
	Petri Net Languages
	Petri Net Languages
	Common Extensions
	Contents
	Behavioral Properties (1)
	Behavioral Properties (2)
	Liveness Examples
	Liveness Examples
	Contents
	Analysis Methods
	Coverability Tree
	Coverability Tree – Algorithm
	Results from the Coverability Tree T
	Contents
	Incidence Matrix
	Incidence Matrix
	State Equation
	State Equation: Reachability
	Reachability - Example
	Reachability - Example
	Contents
	Discrete Event Models with Time
	Timed Petri Net
	Timed Petri Net
	Time Petri Net
	Time Petri Net
	Contents
	Timed Petri Net – Simulation Principle
	Timed Petri Net – Simulation Principle
	Timed Petri Net – Simulation Steps
	Timed Petri Net – Simulation Steps
	Timed Petri Net – Simulation Steps
	Petri Net Simulators

