
Computer Engineering and Networks
Technische Informatik und Kommunikationsnetze

Discrete Event Systems
- Verification of Finite Automata –

Lothar Thiele

2

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

3

What can finite automata be used for?

4

What can finite automata be used for?

specification

simulation

automatic
generation of
software or
hardware

verification

5

What can finite automata be used for?

specification

simulation

automatic
generation of
software or
hardware

verification

6

Verification of Finite Automata

Questions:
• Does the system specification model the desired behavior correctly?
• Do implementation and specification describe the same behavior?
• Can the system enter an undesired (or dangerous) state?

Possible solutions:
• Simulation (sometimes also called validation): Unless the simulation is exhaustive, i.e.,

all possible input sequences are tested, the result is not trustworthy. In general,
simulation can only show the presence of errors but not the absence (correctness).

• Formal analysis (sometimes also called verification): Formal (unambiguous) proof of
correctness.

this is what we will do

7

Verification of Finite Automata

• Due to the finite number of states, proving properties of a finite state machine can
be done by enumeration.

• As computer systems have finite memory, properties of processors (and
embedded systems in general) could be shown in principle.

• But is enumeration a reasonable approach in practice?

combinatorial
gates

registers

input events output events

finite automaton

memory number of states

8 Bit 256

32 Bit 4 109

1KBit 10300

1MBit 10300 000

1GBit 10300 000 000

8

Verification of Finite Automata

• There have been major breakthroughs in recent years on the verification of finite
automata with very large state spaces. Prominent methods are based on
• symbolic model checking via binary decision diagrams (covered in this course) and
• transformation to a Boolean Satisfiability (SAT) problem (not covered in this course).

• Symbolic model checking is a method of verifying temporal properties of finite
(and sometimes infinite) state systems that relies on a symbolic representation of
sets, typically as Binary Decision Diagrams (BDD’s).

• Verification is used in industry for proving the correctness of complex digital
circuits (control, arithmetic units, cache coherence), safety-critical software and
embedded systems (traffic control, train systems, security protocols).

9

Recap Finite Automata (now with output)

q1

q3

q2

q0

1/0

0/1 1/1

1/1

0/0

1/0
0/1

0/0

10

Verification Scenarios

• Comparison of specification and implementation

• Proving properties

reference system

system under test

data structure

data structure
comparison

property

system under test data structure
fixed-point calculation answer

11

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

12

Basic concept of verification using BDDs

• BDDs represent Boolean functions.

• Therefore, they can be used to describe sets of states and transformation
relations.

• Due to the unique representation of Boolean functions, BDDs can be used to proof
equivalence between Boolean functions or between sets of states.

• BDDs can easily and efficiently be manipulated.

13

Binary Decision Diagrams (BDD)

• Concept
• Data structure that allows to represent

Boolean functions.
• The representation is unique for a given

ordering of variables.

• Structure
• BDDs contain “decision nodes” which are

labeled with variable names.
• Edges are labeled with input values.
• Leaves are labeled with output values.

red: 1
green: 0

red: 1
green: 0

14

Decomposition

• BDDs are based on the Boole-Shannon-Decomposition:

(we sometimes use + for logical or and ⋅ for logical and)

• A Boolean function has two co-factors for each variable, one for each valuation:
• : remaining function for x=0
• : remaining function for x=1

x

15

Variable Order

• BDDs are unique for a given ordering of variables.
• Therefore, this class (variable ordering fixed) is also called Ordered Binary Decision

Diagrams (OBDD).
• The ordering is essential for the size of a BDD.

16

Calculating with BDDs

• RESTRICT: Given BDD for , determine BDD for .
• Delete all edges that represent .
• Remove all nodes that represent x; for every pair of edges (a, x), (x, b) include a new

edge (a,b) and remove the old ones.

• SIMPLIFY: Given BDD for , determine simplified BDD for .
• Merge equivalent leaves
• Merge isomorphic nodes, i.e., nodes that represent the same Boolean function.
• Eliminate redundant nodes.

17

Calculating with BDDs

• APPLY: Given BDDs for and , determine a BDD for for some operation .
• Combine the two BDDs recursively based

on the following relation:

• Boolean functions can be converted to BDDs step by step using APPLY.

x

18

Calculating with BDDs

• Digital circuits are first converted to a Boolean expression, e.g., first sort the gates
topologically and then construct the expression from the end.

• Quantifiers are constructed by APPLY and RESTRICT:

19

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

20

Comparison using BDDs

• Boolean (combinatorial) circuits: Compare specification and implementation, or
compare two implementations.

• Method:
• Representation of the two systems in OBDDs, e.g., by applying the APPLY operator

repeatedly.
• Compare the structures of the OBDDs.

• Example:

compare

APPLY

APPLY

21

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

22

Sets and Relations

• Representation of a subset :
• Binary encoding of all elements .
• Subset is represented by:
• Stepwise construction of the BDD corresponding to some subset:

• Example:

characteristic function
of subset A

23

Sets and Relations using BDDs

• Representation of a relation :
• Binary encoding of all elements
• Representation of :

• Example finite automaton:

states

input
events

output
events

finite automaton

characteristic function
of a relation R

for convenience, we remove the binary encoding
in our notation; but u, q, q’ are actually
represented as binary vectors;

24

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

25

Reachability of States

• Problem: Is a state reachable by a sequence of state transitions?
• Method:

• Represent set of states and the transformation relation as OBDDs.
• Use these representations to transform set of sets. Set corresponds to the set of

states reachable after i transitions.
• Iterate the transformation until a fixed-point is reached, i.e., until the set of states

does not change anymore (steady-state).
• Example:

26

But drawing state-diagrams is not feasible in general.

27

But drawing state-diagrams is not feasible in general.

1. Work with sets of states
2. Use characteristic functions to represent sets of states
3. Use BDDs to encode characteristic functions

28

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states Q by means of

the transformation function :

As we neglect the input in the above formulation, we use

29

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states Q by means of

the transformation function :

As we neglect the input in the above formulation, we use

set of all states set of all states

states with at least
one outgoing
transition

states with at least
one incoming
transition

30

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states Q by means of

the transformation function :

As we neglect the input in the above formulation, we use

set of all states set of all states

states with at least
one outgoing
transition

states with at least
one incoming
transition

31

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states Q by means of

the transformation function :

As we neglect the input in the above formulation, we use

set of all states set of all states

states with at least
one outgoing
transition

states with at least
one incoming
transition

32

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states Q by means of

the transformation function :

As we neglect the input in the above formulation, we use

set of all states set of all states

states with at least
one outgoing
transition

states with at least
one incoming
transition

33

Reachability of States

• Transformation of sets of states:
• Determine the set of all direct successor states of a given set of states Q by means of

the transformation function :

As we neglect the input in the above formulation, we use

• Computation:
computation using OBDDs

34

Reachability of States

• Problem: Is a state reachable by a sequence of state transitions?
• Method:

• Represent set of states and the transformation relation as OBDDs.
• Use these representations to transform set of sets. Set corresponds to the set of

states reachable after i transitions.
• Iterate the transformation until a fixed-point is reached, i.e., until the set of states

does not change anymore (steady-state).
• Example:

35

Reachability of States

• Fixed-point iteration
• Start with the initial state, then determine the set of states that can be reached in one

or more steps.

• Due to the finite number of states, the fixed-point exists and is reached in a finite
number of steps (at most the diameter of the state diagram).

• Determine whether the fixed-point is reached or not can be done by comparing the
OBDDs of the current set of reachable states.

36

Reachability of States - Example

• Encode states :

• Encode transition relation :

As a Boolean function:

x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

x1 x0 x1’ x0’

0 0 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 1 0

1 1 0 0

37

Reachability of States - Example

• Encode states :

• Encode transition relation :

As a Boolean function:

x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

x1 x0 x1’ x0’

0 0 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 1 0

1 1 0 0

38

Reachability of States - Example

x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

39

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

40

Comparison of Finite Automata

• For simplicity, we only consider Moore automata, i.e., the output depends on the
current state only. The output function is and .

• Strategy:
• Compute the set of jointly reachable states.
• Compare the output values of the two finite automata.

states

states
=

41

Comparison of Finite Automata

• Computation of the joint transition function:

• Computation of the reachable states (method according to previous slides):

• Computation of the reachable output values:

• The automata are not equivalent iff the following term is true:

42

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

43

Verification Scenarios

• Comparison of specification and implementation

• Proving properties

reference system

system under test

data structure

data structure
comparison

property

system under test data structure
fixed-point calculation answer

44

Verification of Finite Automata - CTL

• Verify properties of a finite automaton, for example
• Can we always reset the automaton?
• Is every request followed by an acknowledgement?
• Are both outputs always equivalent?

• Specification of the query in a formula of temporal logic. We use a simple form
that is denoted as Computation Tree Logic (CTL).

• Let us start with a minimal set of operators.
• Any atomic proposition is a CTL formula.
• Suppose that are CTL formula. Then the following are as well:

The printer is busy.
The light is on.

45

Verification of Finite Automata - CTL

• What is the meaning of the quantifiers?
• E : “There exists at least one path from the current state where holds”
• X : “ has to hold at the next state”
• G : “ has to hold on the entire subsequent path”
• U : “ has to hold at least until at some state holds”

• There are more quantifiers, but they can be replaced by the above ones:
• F : “ eventually has to hold (somewhere on the subsequent path)
• A : “ has to hold on all paths starting from the current state“

• Some rules:

46

Verification of Finite Automata - CTL

• Visualization of a transition system and its computation tree:

…

47

Verification of Finite Automata - CTL

• We use the depicted computation tree as a running example.
• Moreover, we suppose that the black states satisfy p and the red states satisfy q.

Then, the topmost state satisfies the given formula in the examples.

48

Verification of Finite Automata - CTL

49

Verification of Finite Automata - CTL

50

Verification of Finite Automata - CTL

51

Verification of Finite Automata - CTL

52

Verification of Finite Automata - CTL

Let "P" mean "I like chocolate" and Q mean "It's warm outside.“
• “AG P”:
• “EF P”:
• “AF EG P”:
• “EG AF P”:

• “P AU Q”:

53

Verification of Finite Automata - CTL

Let "P" mean "I like chocolate" and Q mean "It's warm outside.“
• “AG P”: I will like chocolate from now on, no matter what happens.
• “EF P”: It's possible I may like chocolate some day, at least for one day.
• “AF EG P”: It's always possible (AF) that I will suddenly start liking chocolate for

the rest of time.
• “EG AF P”: This is a critical time in my life. Depending on what happens next (E),

it's possible that for the rest of time (G), there will always be some time in the
future (AF) when I will like chocolate. However, if the wrong thing happens next,
then all bets are off and there's no guarantee about whether I'll ever like
chocolate.

• “P AU Q”: No matter what happens, I will like chocolate from now on. But when it
gets warm outside, I don’t know whether I still like it.

54

Verification of Finite Automata - CTL

• Example Dining Philosophers: Five
philosophers are sitting around a
table, taking turns at thinking and eating.

• We shall express a couple of properties in CTL. Let us assume the following atomic
propositions:
• ei : philosopher i is currently eating

55

Verification of Finite Automata - CTL

• “Philosophers 1 and 4 will never eat at the same time.”

• “Always every philosopher will get infinitely many turns to eat.”

• “Philosopher 2 will be the first to eat.”

56

Verification of Finite Automata - CTL

• “Philosophers 1 and 4 will never eat at the same time.”

• “Always every philosopher will get infinitely many turns to eat.”

• “Philosopher 2 will be the first to eat.”

57

Verification of Finite Automata - CTL

• “Philosophers 1 and 4 will never eat at the same time.”

• “Always every philosopher will get infinitely many turns to eat.”

• “Philosopher 2 will be the first to eat.”

58

Verification of Finite Automata - CTL

• “Philosophers 1 and 4 will never eat at the same time.”

• “Always every philosopher will get infinitely many turns to eat.”

• “Philosopher 2 will be the first to eat.”

59

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

60

Verification of Finite Automata

• In order to compute CTL formula, we first define as the set of all initial states of
the finite automaton for which CTL formula is true. Then we can say that a finite
automaton with initial state satisfies iff

• Now, we can use our “trick”: computing with sets of states!
• is true if the state q is in the set , i.e., it is an initial state for which the CTL

formula is true.
• Therefore, we can also say

• When we compute the CTL-formulas, we start from the innermost terms.
• We suppose that every state has at least one successor state (could be itself).

characteristic function
of the set

61

Verification of Finite Automata

• We now show how to compute some operators in CTL. All others can be
determined using the equivalence relations between operators that we listed
earlier.
• : Let us first define the set of predecessor states of Q, i.e., the set of states that

lead in one transition to a state in Q:

Suppose that Q is the set of initial states for which the formula is true. Then we can
write

sets

characteristic
functions

62

Verification of Finite Automata

• Example for : Compute EX q2

As , the CTL formula EX q2 is not true.

q0

q1

q2

q3

63

Verification of Finite Automata
• : The idea here is to start with the set of initial states for which the formula is

true. Then we add to this set the set of predecessor states. For the resulting set of
states we do the same, …., until we reach a fixed-point. The corresponding operations
can be done using BDDs (as described before).

64

Verification of Finite Automata

• Example for : Compute EF q2

As , the CTL formula EF q2 is true.

q0

q1

q2

q3

65

Verification of Finite Automata
• : The idea here is to start with the set of initial states for which the formula is

true. Then we cut this set with the set of predecessor states. For the resulting set of
states we do the same, …., until we reach a fixed-point. The corresponding operations
can be done using BDDs (as described before).

66

Verification of Finite Automata

• Example for : Compute EG q2

As , the CTL formula EG q2 is not true.

q0

q1

q2

q3

67

Verification of Finite Automata
• : The idea here is to start with the set of initial states for which the formula

is true. Then we add to this set the set of predecessor states for which the formula
is true. For the resulting set of states we do the same, …., until we reach a fixed-point.
The corresponding operations can be done using BDDs (as described before).

Like , the only difference is that on our path backwards, we always make sure
that also holds.

68

Verification of Finite Automata

• Example for : Compute q0 EU q1

As , the CTL formula q0 EG q1 is true.

q0

q1

q2

q3

69

Overview

• Introduction
• Binary Decision Diagrams

• Representation of Boolean Functions
• Comparing two circuits
• Representation of Sets

• Finite Automata
• Reachability of States
• Comparing two finite automata
• Proving properties of finite automata

• Computation Tree Logic (CTL)
• Evaluating formulas
• Verification of finite automata

70

Verification of Finite Automata - Example

• Modeling and verification of a simple ATM-Money-Withdrawal protocol.
• We use the tool Uppaal

• freely available
• much more general modeling and verification possibilities than what we use here
• can be used to verify timed behavior of discrete event systems

communicating
finite automata

sequence
diagram

simulation
trace

71

ATM without Cancel

send event “bank_card”

communicating finite automata

enabled by event “cash”initial state

AG

EF

72

ATM with Cancel

sequence
chart

counter
example

	Discrete Event Systems�- Verification of Finite Automata –��Lothar Thiele
	Overview
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Verification of Finite Automata
	Verification of Finite Automata
	Verification of Finite Automata
	Recap Finite Automata (now with output)
	Verification Scenarios
	Overview
	Basic concept of verification using BDDs
	Binary Decision Diagrams (BDD)
	Decomposition
	Variable Order
	Calculating with BDDs
	Calculating with BDDs
	Calculating with BDDs
	Overview
	Comparison using BDDs
	Overview
	Sets and Relations
	Sets and Relations using BDDs
	Overview
	Reachability of States
	Foliennummer 26
	Foliennummer 27
	Reachability of States
	Reachability of States
	Reachability of States
	Reachability of States
	Reachability of States
	Reachability of States
	Reachability of States
	Reachability of States
	Reachability of States - Example
	Reachability of States - Example
	Reachability of States - Example
	Overview
	Comparison of Finite Automata
	Comparison of Finite Automata
	Overview
	Verification Scenarios
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Verification of Finite Automata - CTL
	Overview
	Verification of Finite Automata
	Verification of Finite Automata
	Verification of Finite Automata
	Verification of Finite Automata
	Verification of Finite Automata
	Verification of Finite Automata
	Verification of Finite Automata
	Verification of Finite Automata
	Verification of Finite Automata
	Overview
	Verification of Finite Automata - Example
	ATM without Cancel
	ATM with Cancel

