
ETH Zürich (D-ITET)

Laurent Vanbever

September, 27 2018

www.vanbever.eu

Automata & languages

A primer on the Theory of Computation

Part 2 out of 5

Last week was all about

Deterministic Finite Automaton

Regular Language

Formal definition

Closure

We saw three main concepts

Regular Language

Formal definition

Closure

A language L is regular

if some finite automaton

recognizes it

Regular Language

Formal definition

Closure

A finite automaton is a 5-tuple

(Q,⌃, �, q0, F)

set of

states

alphabet

transition 
function

start

state

set of

accept

states

(Q,⌃, �, q0, F)

Regular Language

Formal definition

Closure

If and are regular,

then so are:

L1 [L2

L1 L2

L1 \ L2

L1 � L2L1 � L2

L1

Equivalence

Closure1

2

Finite Automata
Thu Sept 27

DFA

NFA

Regular Expression

1/42

Back	to	Nondeterministic	FA

• Question:		Draw	an	FA	which	accepts	the	language
L1	=	{	x	Î {0,1}*	|	4th bit	from	left	of	x	is	0	}

• FA	for	L1:

• Question:		What	about	the	4th bit	from	the	right?

• Looks	as	complicated:	L2	=	{	x	Î {0,1}*	|	4th bit	from	right	of	x	is	0	}

0,1

0,1

0,1 0,1
0

0,1
1

1/43

Weird	Idea

• Notice	that	L2	is	the	reverse	L1.		

• I.e.	saying	that	0	should	be	the	4th from	the	left	is	reverse	of	saying	
that	0	should	be	4th from	the	right.	Can	we	simply	reverse the	picture	
(reverse	arrows,	swap	start	and	accept)?!?

• Here’s	the	reversed	version:

0,1

0,1

0,1 0,1
0

0,1
1

0,1

0,1

0,1 0,1
0

0,1
1

1/44

Discussion	of	weird	idea

1. Silly	unreachable	state.	Not	pretty,	but	allowed	in	model.

2. Old	start	state	became	a	crashing	accept	state.	Underdeterminism.	
Could	fix	with	fail	state.

3. Old	accept	state	became	a	state	from	which	we	don’t	know	what	
to	do	when	reading	0.	Overdeterminism.	Trouble.

4. (Not	in	this	example,	but)	There	could	be	more	than	one	start	
state!	Seemingly	outside	standard	deterministic	model.

• Still,	there	is	something	about	our	automaton.	It	turns	out	that	
NFA’s	(=Nondeterministic	FA)	are	actually	quite	useful	and	are	
embedded	in	many	practical	applications.

• Idea,	keep	more	than	1	active	state if	necessary.

1/45

Introduction	to	Nondeterministic	Finite	Automata

• The	static	picture	of	an	NFA	is	as	a	graph	whose	edges	are	labeled	by	
S and	by	e (together	called	Se)	and	with	start	vertex	q0	and	accept	
states	F.			

• Example:

• Any	labeled	graph	you	can	come	up	with	is	an	NFA,	as	long	as	it	only	
has	one	start	state.		Later,	even	this	restriction	will	be	dropped.

0,10

1
e

1

1/46

NFA:	Formal	Definition.

• Definition:	A	nondeterministic	finite	automaton	(NFA) is	encapsulated	by	M	
=	(Q,	S,	d,	q0,	F)	in	the	same	way	as	an	FA,	except	that	d has	different	
domain	and	co- domain: !: #×Σ& → (#

• Here,	P(Q)	is	the	power	set	of	Q	so	that	d(q,a) is	the	set	of	all	endpoints	of	
edges	from	q which	are	labeled	by	a.

• Example,	for	NFA	of	the	previous	slide:

d(q0,0) = {q1,q3},
d(q0,1) = {q2,q3},
d(q0,e) = Æ,
...
d(q3,e) = {q2}.

q1

q0
q2

q3
0,10

1
e

1

1/47

Formal	Definition	of	an	NFA:	Dynamic

• Just	as	with	FA’s,	there	is	an	implicit	auxiliary	tape	containing	the	
input	string	which	is	operated	on	by	the	NFA.	As	opposed	to	FA’s,	
NFA’s	are	parallel	machines – able	to	be	in	several	states	at	any	given	
instant.	The	NFA	reads	the	tape	from	left	to	right	with	each	new	
character	causing	the	NFA	to	go	into	another	set	of	states.	When	the	
string	is	completely	read,	the	string	is	accepted	depending	on	whether	
the	NFA’s	final	configuration	contains	an	accept	state.

• Definition:	A	string	u	is	accepted by	an	NFA	M iff there	exists	a	path
starting	at	q0	which	is	labeled	by	u	and	ends	in	an	accept	state.	The	
language	accepted	by	M is	the	set	of	all	strings	which	are	accepted	by	
M	and	is	denoted	by	L(M).
• Following	a	label	e is	for	free	(without	reading	an	input	symbol).	In	

computing	the	label	of	a	path,	you	should	delete	all	e’s.
• The	only	difference	in	acceptance	for	NFA’s	vs.	FA’s	are	the	words	“there	

exists”.	In	FA’s	the	path	always	exists	and	is	unique.

1/48

Example

M4:

Question:	Which	of	the	following	strings	is	accepted?
1. e
2. 0
3. 1
4. 0111

q1

q0
q2

q3
0,10

1
e

1

1/50

NFA’s	vs.	Regular	Operations

• On	the	following	few	slides	we	will	study	how	NFA’s	interact	with	regular	
operations.

• We	will	use	the	following	schematic	drawing	for	a	general	NFA.

• The	red	circle	stands	for	the	start	state	q0,	the	green	portion	represents	
the	accept	states	F,	the	other	states	are	gray.

1/51

NFA:	Union

• The	union	AÈB is	formed	by	putting	the	automata	A	and	B	in	parallel.	
Create	a	new	start	state	and	connect	it	to	the	former	start	states	
using	e-edges:

1/52

Union	Example

• L =	{x	has	even	length}	È {x	ends	with	11}

c

b

0,1 0,1

d e f

0

1

0

0

1

1

a
e e

1/53

NFA:	Concatenation

• The	concatenation	A•B is	formed	by	putting	the	automata	in	serial.	
The	start	state	comes	from	A while	the	accept	states	come	from	B.	
A’s	accept	states	are	turned	off	and	connected	via	e-edges	to	B	’s	
start	state:

1/54

Concatenation	Example

• L =	{x	has	even	length}	• {x	ends	with	11}

• Remark:	This	example	is	somewhat	questionable…

c

b

0,1 0,1

d e f

0

1

0

0

1

1
e

1/55

NFA’s:	Kleene-+.

• The	Kleene-+	A+ is	formed	by	creating	a	feedback	loop.		The	accept	
states	connect	to	the	start	state	via	e-edges:

1/56

Kleene-+	Example

L	=	{ }+

=	{ }

x is a streak of one or more 1’s followed
by a streak of two or more 0’s

00
c d f

1

1
0

e

e

x starts with 1, ends with 0, and alternates
between one or more consecutive 1’s

and two or more consecutive 0’s

1/57

NFA’s:	Kleene-*

• The	construction	follows	from	Kleene-+	construction	using	the	fact	
that	A*	is	the	union	of	A+ with	the	empty	string.		Just	create	Kleene-+	
and	add	a	new	start	accept	state	connecting	to	old	start	state	with	an	
e-edge:

1/58

Closure	of	NFA	under	Regular	Operations

• The	constructions	above	all	show	that	NFA’s	are	constructively closed	
under	the	regular	operations.	More	formally,

• Theorem:	If	L1	and L2	are	accepted	by	NFA’s,	then	so	are	L1	È L2	, L1	•
L2,	L1+ and	L1*.	In	fact,	the	accepting	NFA’s	can	be	constructed	in	
linear	time.

• This	is	almost	what	we	want.	If	we	can	show	that	all	NFA’s	can	be	
converted	into	FA’s	this	will	show	that	FA’s	– and	hence	regular	
languages	– are	closed	under	the	regular	operations.

1/59

Regular	Expressions	(REX)

• We	are	already	familiar	with	the	regular	operations.	Regular	
expressions	give	a	way	of	symbolizing	a	sequence	of	regular	
operations,	and	therefore	a	way	of	generating	new	languages	from	
old.	

• For	example,	to	generate	the	regular	language	{banana,nab}*	from	
the	atomic	languages	{a},{b}	and	{n}	we	could	do	the	following:

(({b}•{a}•{n}•{a}•{n}•{a})È({n}•{a}•{b}))*

Regular	expressions	specify	the	same	in	a	more	compact	form:		

(bananaÈnab)*

1/60

Regular	Expressions	(REX)

• Definition:	The	set	of	regular	expressions over	an	alphabet	S and	the	
languages	in	S*	which	they	generate	are	defined	recursively:
– Base	Cases:	Each	symbol	a	Î S as	well	as	the	symbols	e and	Æ are	

regular	expressions:
• a	generates	the	atomic	language	L(a)	=	{a}
• e generates	the	language	L(e)	=	{e}
• Æ generates	the	empty	language	L(Æ)	=	{	}	=	Æ

– Inductive	Cases:	if	r1 and	r2	are	regular	expressions	so	are	r1Èr2,	
(r1)(r2),	(r1)*	and	(r1)+:
• L(r1Èr2)	=	L(r1)ÈL(r2),	so	r1Èr2	generates	the	union
• L((r1)(r2))	=	L(r1)•L(r2),	so	(r1)(r2) is	the	concatenation
• L((r1)*)	=	L(r1)*, so	(r1)* represents	the	Kleene-*
• L((r1)+)	=	L(r1)+,	so	(r1)+ represents	the	Kleene-+

1/61

Regular	Expressions:	Table	of	Operations	including	UNIX

Operation Notation Language UNIX

Union r1Èr2 L(r1)ÈL(r2) r1|r2

Concatenation (r1)(r2) L(r1)•L(r2) (r1)(r2)

Kleene-* (r)* L(r)* (r)*

Kleene-+ (r)+ L(r)+ (r)+

Exponentiation (r)n L(r)n (r){n}

1/62

Regular	Expressions:	Simplifications

• Just	as	algebraic	formulas	can	be	simplified	by	using	less	parentheses	
when	the	order	of	operations	is	clear,	regular	expressions	can	be	
simplified.	Using	the	pure	definition	of	regular	expressions	to	express	
the	language	{banana,nab}*	we	would	be	forced	to	write	something	
nasty	like

((((b)(a))(n))(((a)(n))(a))È(((n)(a))(b)))*

• Using	the	operator	precedence	ordering	*,	• ,	È and	the	associativity	
of	• allows	us	to	obtain	the	simpler:

(bananaÈnab)*

• This	is	done	in	the	same	way	as	one	would	simplify	the	algebraic	
expression	with	re-ordering	disallowed:

((((b)(a))(n))(((a)(n))(a))+(((n)(a))(b)))4	=	(banana+nab)4

1/63

Regular	Expressions:	Example

• Question:	Find	a	regular	expression	that	generates	the	language	
consisting	of	all	bit-strings	which	contain	a	streak	of	seven	0’s	or	contain	
two	disjoint	streaks	of	three	1’s.
– Legal:		010000000011010,	01110111001,	111111
– Illegal:	11011010101,	10011111001010,	00000100000

• Answer:		(0È1)*(07È13(0È1)*13)(0È1)*
– An	even	briefer	valid	answer	is:	S*(07È13S*13)S*
– The	official answer	using	only	the	standard	regular	operations	is:

(0È1)*(0000000È111(0È1)*111)(0È1)*
– A	brief	UNIX	answer	is:

(0|1)*(0{7}|1{3}(0|1)*1{3})(0|1)*

1/64

Regular	Expressions:	Examples

1) 0*10*

2) (SS)*

3) 1*Ø

4) S =	{0,1},	{w	|	w	has	at	least	one	1}

5) S =	{0,1},	{w	|	w	starts	and	ends	with	the	same	symbol}

6) {w	|	w	is	a	numerical	constant	with	sign	and/or	fractional	part}
• E.g.	3.1415,	-.001,	+2000

1/65

Regular	Expressions:	A	different	view…

• Regular	expressions	are	just	strings.	Consequently,	the	set	of	all	regular	
expressions	is	a	set	of	strings,	so	by	definition	is	a	language.

• Question:	Supposing	that	only	union,	concatenation	and	Kleene-*	are	
considered.	What	is	the	alphabet	for	the	language	of	regular	expressions	
over	the	base	alphabet S ?

• Answer:	S È {	(,),	È,	*}

1/66

REX	à NFA

• Since	NFA’s	are	closed	under	the	regular	operations	we	immediately	get

• Theorem:	Given	any	regular	expression	r		there	is	an	NFA	N		which	
simulates	r.		That	is,	the	language	accepted	by	N is	precisely	the	language	
generated	by	r so	that	L(N)	=	L(r).	Furthermore,	the	NFA	is	constructible	
in	linear	time.

1/67

REX	à NFA

• Proof:	The	proof	works	by	induction,	using	the	recursive	definition	of	
regular	expressions.	First	we	need	to	show	how	to	accept	the	base	case	
regular	expressions	aÎS, e and	Æ.		These	are	respectively	accepted	by	the	
NFA’s:

• Finally,	we	need	to	show	how	to	inductively	accept	regular	expressions	
formed	by	using	the	regular	operations.	These	are	just	the	constructions	
that	we	saw	before,	encapsulated	by:

q0 q0q1q0
a

1/68

REX	à NFA	exercise:	Find	NFA	for)* ∪) ∗

1/69

REX	à NFA:	Example

• Question:	Find	an	NFA	for	the	regular	expression	
(0È1)*(0000000È111(0È1)*111)(0È1)*

of	the	previous	example.

1/70

REX	à NFA	à FA	?!?

• The	fact	that	regular	expressions	can	be	converted	into	NFA’s	means	
that	it	makes	sense	to	call	the	languages	accepted	by	NFA’s	“regular.”		

• However,	the	regular	languages	were	defined	to	be	the	languages	
accepted	by	FA’s,	which	are	by	default,	deterministic.		It	would	be	
nice	if	NFA’s	could	be	“determinized”	and	converted	to	FA’s,	for	then	
the	definition	of	“regular”	languages,	as	being	FA-accepted	would	be	
justified.		

• Let’s	try	this	next.

1/71

NFA’s	have	3	types	of	non-determinism

Nondeterminism
type

Machine
Analog

d -function Easy to fix? Formally

Under-determined Crash No output yes, fail-
state |d(q,a)|= 0

Over-determined Random
choice

Multi-
valued no |d(q,a)|> 1

e
Pause
reading

Redefine
alphabet no |d(q,e)|> 0

1/72

Determinizing	NFA’s:	Example

• Idea:	We	might	keep	track	of	all	parallel	active	states	as	the	input	is	
being	called	out.		If	at	the	end	of	the	input,	one	of	the	active	states	
happened	to	be	an	accept	state,	the	input	was	accepted.

• Example,	consider	the	following	NFA,	and	its	deterministic	FA.

1

2 3

a

a

e

a,b

b

1/73

One-Slide-Recipe	to	Derandomize

• Instead	of	the	states	in	the	NFA,	we	consider	the	power-states in	the	FA.	
(If	the	NFA	has	n	states,	the	FA	has	2n states.)

• First	we	figure	out	which	power-states	will	reach	which	power-states	in	
the	FA.	(Using	the	rules	of	the	NFA.)

• Then	we	must	add	all	epsilon-edges:	We	redirect	pointers	that	are	initially	
pointing	to	power-state	{a,b,c}	to	power-state	{a,b,c,d,e,f},	if	and	only	if	
there	is	an	epsilon-edge-only-path	pointing	from	any	of	the	states	a,b,c	to	
states	d,e,f	(a.k.a.	transitive	closure).	We	do	the	very	same	for	the	starting	
state:	starting	state	of	FA	=	{starting	state	of	NFA,	all	NFA	states	that	can	
recursively	be	reached	from	there}

• Accepting	states of	the	FA	are	all	states	that	include	a	accepting	NFA	
state.

1/74

Remarks

• The	previous	recipe	can	be	made	totally	formal.	More	details	can	be	
found	in	the	reading	material.

• Just	following	the	recipe	will	often	produce	a	too	complicated	FA.	
Sometimes	obvious	simplifications	can	be	made.	In	general	however,	this	
is	not	an	easy	task.

1/75

Automata	Simplification

• The	FA	can	be	simplified.	States	{1,2}	and	{1},	for	example,	cannot	be	
reached.	Still	the	result	is	not	as	simple	as	the	NFA.

Derandomization Exercise

• Exercise:	Let’s	derandomize the	simplifed two-state	NFA	from	slide	1/70	
which	we	derived	from	regular	expression)* ∪) ∗

1/76

x n
a b

a
a

1/77

REX	à NFA	à FA

• Summary:	Starting	from	any	NFA,	we	can	use	subset	construction	and	the	
epsilon-transitive-closure	to	find	an	equivalent	FA	accepting	the	same	
language.	Thus,

• Theorem:	If	L	is	any	language	accepted	by	an	NFA,	then	there	exists	a	
constructible	[deterministic]	FA	which	also	accepts	L.

• Corollary:	The	class	of	regular	languages	is	closed	under	the	regular	
operations.

• Proof:	Since	NFA’s	are	closed	under	regular	operations,	and	FA’s	are	by	
default	also	NFA’s,	we	can	apply	the	regular	operations	to	any	FA’s	and	
determinize	at	the	end	to	obtain	an	FA	accepting	the	language	defined	by	
the	regular	operations.

1/78

REX	à NFA	à FA	à REX	…

• We	are	one	step	away	from	showing	that	FA’s	» NFA’s	» REX’s;		i.e.,	
all	three	representation	are	equivalent.		We	will	be	done	when	we	
can	complete	the	circle	of	transformations:

FA

NFA

REX

1/79

NFA	à REX	is	simple?!?

• Then	FA	à REX	even	simpler!

• Please	solve	this	simple	example:

1

0

0

1

1

1
1

0

0
0

1/80

REX	à NFA	à FA	à REX	…

• In	converting	NFA’s	to	REX’s	we’ll	introduce	the	most	generalized	
notion	of	an	automaton,	the	so	called	“Generalized	NFA”	or	
“GNFA”.		In	converting	into	REX’s,	we’ll	first	go	through	a	GNFA:

FA

NFA

REX

GNFA

1/81

GNFA’s

• Definition:	A	generalized	nondeterministic	finite	automaton	(GNFA) is	
a	graph	whose	edges	are	labeled	by	regular	expressions,
– with	a	unique	start	state	with	in-degree	0,	but	arrows	to	every	

other	state
– and	a	unique	accept	state	with	out-degree	0,	but	arrows	from	

every	other	state	(note	that	accept	state	¹ start	state)
– and	an	arrow	from	any	state	to	any	other	state	(including	self).

• A	GNFA	accepts a	string	s	if	there	exists	a	path	p from	the	start	state	
to	the	accept	state such	that	w is	an	element	of	the	language	
generated	by	the	regular	expression	obtained	by	concatenating	all	
labels	of	the	edges	in	p.

• The	language	accepted by	a	GNFA	consists	of	all	the	accepted	strings	
of	the	GNFA.

1/82

GNFA	Example

• This	is	a	GNFA	because	edges	are	labeled	by	REX’s,	start	state	has	no	
in-edges,	and	the	unique accept	state	has	no	out-edges.

• Convince	yourself	that	000000100101100110	is	accepted.

b

c

0Èe

000

a

(0110È1001)*

1/83

NFA	à REX	conversion	process	

1. Construct	a	GNFA	from	the	NFA.
A. If	there	are	more	than	one	arrows	from	one	state	to	another,	unify	

them	using	“È”
B. Create	a	unique	start	state	with	in-degree	0
C. Create	a	unique	accept	state	of	out-degree	0
D. [If	there	is	no	arrow	from	one	state	to	another,	insert	one	with	

label	Ø]

2. Loop:	As	long	as	the	GNFA	has	strictly	more	than	2	states:
Rip	out	arbitrary	interior	state	and	modify	edge	labels.	

3. The	answer	is	the	unique	label	r.

acceptstart
r

1/84

NFA	à REX:	Ripping	Out.

• Ripping	out	is	done	as	follows.		If	you	want	to	rip	the	middle	state	v	
out	(for	all	pairs	of	neighbors	u,w)…

• …	then	you’ll	need	to	recreate	all	the	lost	possibilities	from	u		to	w.		
I.e.,	to	the	current	REX	label	r4	of	the	edge	(u,w)	you	should	add	the	
concatenation	of	the	(u,v)	label	r1	followed	by	the	(v,v)-loop	label	r2	
repeated	arbitrarily,	followed	by	the	(v,w)	label	r3..	The	new	(u,w)	
substitute	would	therefore	be:

v wu
r3

r2

r1

r4

wu
r4 È r1 (r2)*r3

1/85

FA	à REX:	Example

1/86

FA	à REX:	Exercise

1/87

Summary:	FA	≈ NFA	≈ REX

• This	completes	the	demonstration	that	the	three	methods	of	describing	
regular	languages	are:

1. Deterministic	FA’s
2. NFA’s
3. Regular	Expressions

• We	have	learnt	that	all	these	are	equivalent.

1/88

Remark	about	Automaton	Size

• Creating	an	automaton	of	small	size	is	often	advantageous.	
– Allows	for	simpler/cheaper	hardware,	or	better	exam	grades.
– Designing/Minimizing	automata	is	therefore	a	funny	sport.	Example:

a

b

1

d

0,1

e

0,1

1

c

0,1

gf

0

0

0

0
1

1

1/89

Minimization

• Definition:	An	automaton	is	irreducible if	
– it	contains	no	useless	states,	and
– no	two	distinct	states	are	equivalent.

• By	just	following	these	two	rules,	you	can	arrive	at	an	“irreducible”	
FA.	Generally,	such	a	local	minimum	does	not	
have	to	be	a	global	minimum.	

• It	can	be	shown	however,	that	these	minimization	rules	actually	
produce	the	global	minimum	automaton.	

• The	idea	is	that	two	prefixes	u,v are	indistinguishable	iff for	all	
suffixes	x,	ux Î L	iff vx Î L.	If	u	and	v	are	distinguishable,	they	cannot	
end	up	in	the	same	state.	Therefore	the	number	of	states	must	be	at	
least	as	many	as	the	number	of	pairwise	distinguishable	prefixes.

1/91

Pigeonhole	principle

• Consider	language	L,	which	contains	word	w Î L.
• Consider	an	FA	which	accepts	L,	with	n	<	|w|	states.
• Then,	when	accepting	w,	the	FA	must	visit	at	least	one	state	twice.

• This	is	according	to	the	pigeonhole	(a.k.a.	Dirichlet)	principle:
– If	m>n	pigeons	are	put	into	n	pigeonholes,	there's	a	hole	with	

more	than	one	pigeon.	
– That’s	a	pretty	fancy	name	for	a	boring	observation...

1/92

Languages	with	unbounded	strings

• Consequently,	regular	languages	with	unbounded	strings	can	only	be	
recognized	by	FA	(finite!	bounded!)	automata	if	these	long	strings	loop.

• The	FA	can	enter	the	loop	once,	twice,	…,	and	not	at	all.	
• That	is,	language	L	contains	all {xz,	xyz,	xy2z,	xy3z,	…}.

1/93

Pumping	Lemma

• Theorem:	Given	a	regular	language	L,	there	is	a	number	p (called	the	
pumping	number)	such	that	any	string	in	L	of	length	³ p	is	pumpable	
within	its	first	p letters.	

• In	other	words,	for	all	u Î L	with	|u |	³ p	we	can	write:
– u	=	xyz (x	is	a	prefix,	z	is	a	suffix)
– |y|	³ 1 (mid-portion	y	is	non-empty)
– |xy|	£ p (pumping	occurs	in	first	p	letters)
– xyiz	Î L		for	all	i ³ 0(can	pump	y-portion)

• If,	on	the	other	hand,	there	is	no	such	p,	then	the	language	is	not	regular.

1/94

Pumping	Lemma	Example

• Let	L	be	the	language	{0n1n |	n	³ 0}

• Assume	(for	the	sake	of	contradiction)	that	L	is	regular
• Let	p be	the	pumping	length.	Let	u be	the	string	0p1p.	
• Let’s	check	string	u	against	the	pumping	lemma:

• “In	other	words,	for	all	u Î L	with	|u |	³ p	we	can	write:
– u	=	xyz (x	is	a	prefix,	z	is	a	suffix)
– |y|	³ 1 (mid-portion	y	is	non-empty)
– |xy|	£ p (pumping	occurs	in	first	p	letters)
– xyiz Î L		for	all	i ³ 0(can	pump	y-portion)”

à y = 0+

à Then, xz or xyyz is not in L. Contradiction!

1/95

Let’s	make	the	example	a	bit	harder…

• Let	L	be	the	language	{w	|	w	has	an	equal	number	of	0s	and	1s}

• Assume	(for	the	sake	of	contradiction)	that	L	is	regular
• Let	p be	the	pumping	length.	Let	u be	the	string	0p1p.	
• Let’s	check	string	u	against	the	pumping	lemma:

• “In	other	words,	for	all	u Î L	with	|u |	³ p	we	can	write:
– u	=	xyz (x	is	a	prefix,	z	is	a	suffix)
– |y|	³ 1 (mid-portion	y	is	non-empty)
– |xy|	£ p (pumping	occurs	in	first	p	letters)
– xyiz Î L		for	all	i ³ 0(can	pump	y-portion)”

1/96

Harder	example	continued

• Again,	y	must	consist	of	0s	only!	
• Pump	it	there!	Clearly	again,	if	xyz	Î L,	then	xz or	xyyz are	not	in	L.

• There’s	another	alternative	proof	for	this	example:
– 0*1*	is	regular.
– Ç is	a	regular	operation.	
– If	L	regular,	then	L	Ç 0*1*	is	also	regular.	
– However,	L	Ç 0*1*	is	the	language	we	studied	in	the	previous	example	(0n1n).	

A	contradiction.

1/97

Now	you	try…

• Is	-. = 00	 	0 ∈ 0 ∪ 1 ∗} regular?

• Is	-6 = 17	 	8	being	a	prime	number	} regular?

