Carnegie Mellon University

Research Showcase @ CMU

Computer Science Department School of Computer Science

6-1990

Symbolic Model Checking: 102V States and
Beyond

JR.Burch
Carnegie Mellon University

Edmund M. Clarke
Carnegie Mellon University

K L. McMillan
Carnegie Mellon University

D L.Dill
Stanford University

LJ. Hwang
Stanford University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please

contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Symbolic Model Checking: 10?° States
and Beyond

J. R. Burch E. M. Clarke K. L. McMillan*
School of Computer Science
Carnegie Mellon University

D. L. Dill L. J. Hwang
Stanford University

Abstract

Many different methods have been devised for automatically veri-
fying finite state systems by examining state-graph models of system
behavior. These methods all depend on decision procedures that ex-
plicitly represent the state space using a list or a table that grows in
proportion to the number of states. We describe a general method that
represents the state space symbolically instead of explicitly. The gener-
ality of our method comes from using a dialect of the Mu-Calculus as
the primary specification language. We describe a model checking al-
gorithm for Mu-Calculus formulas that uses Bryant’s Binary Decision
Diagrams (1986) to represent relations and formulas. We then show
how our new Mu-Calculus model checking algorithm can be used to de-
rive efficient decision procedures for CTL model checking, satisfiability
of linear-time temporal logic formulas, strong and weak observational
equivalence of finite transition systems, and language containment for
finite w-automata. The fixed point computations for each decision pro-
cedure are sometimes complex, but can be concisely expressed in the
Mu-Calculus. We illustrate the practicality of our approach to sym-
bolic model checking by discussing how it can be used to verify a simple
synchronous pipeline circuit.

*This research was sponsored in part by the Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 4976. The National Science Foundation also sponsored
this research effort under contract numbers CCR-8722633 and MIP-8858807. The third
author is supported by an AT&T Bell Laboratories Ph.D. Scholarship. The fourth and
fifth authors are supported by a CIS Seed Research Grant.

1 Introduction

Over the last decade, it has become apparent that finite-state systems can
often be verified automatically by examining state-graph models of system
behavior. A number of different methods have been proposed: temporal
logic model checking, language containment algorithms for automata, “con-
formation checking” in trace theory, and testing for various equivalences and
preorders between finite CCS-like models. Although each of these methods
uses a different computational model and a different notion of verification,
they all rely on algorithms that explicitly represent a state space, using a
list or table that grows in proportion to the number of states. Because the
number of states in the model may grow exponentially with the number
concurrently executing components, the size of the state table is usually the
limiting factor in applying these algorithms to realistic systems.

Our technique for combating this “state explosion problem” is to repre-
sent the state space symbolically instead of explicitly. In many cases, the
intuitive “complexity” of the state space is much less than the number of
states would indicate. Often systems with a large number of components
have a regular structure that would suggest a corresponding regularity in
the state graph. Consequently, it may be possible to find more sophisticated
representations of the state space that exploit this regularity in a way that
a simple table of states cannot. Omne good candidate for such a symbolic
representation is the binary decision diagram (BDD) (Bryant, 1986), which
is widely used in various tools for the design and analysis of digital circuits.
BDDs do not prevent a state explosion in all cases, but they allow many
practical systems with extremely large state spaces to be verified—systems
that would be impossible to handle with explicit state enumeration meth-
ods. Indeed, we present empirical results in this paper that show that the
method can be applied in practice to verify models with in excess of 102°
states. Explicit state enumeration methods described in the literature are
limited to systems with at most 10® reachable states.

Several groups have applied this idea to different verification methods.
Coudert, Berthet, and Madre (1989) describe a BDD-based system for show-
ing equivalence between deterministic Moore machines. Their system per-
forms a symbolic breadth-first execution of the state space determined by of
the product of the two machines. This model is not generalized to models
other than deterministic Moore machines, or notions of verification other
than strict equivalence. Bose and Fisher (1989) have described a BDD-
based algorithm for CTL model checking that is applicable to synchronous

circuits. However, their method is unable to handle asynchronous concur-
rency, or properties of infinite computations, such as liveness and fairness.

All of these methods are based on iterative computation of fixed points.
It seems clear that numerous additional papers could be generated by ap-
plying this technique to different verification methodologies. Our goal is to
provide a unified framework for these results by showing that all can be seen
as special cases of symbolic evaluation of Mu-Calculus formulas.

Another technique for reducing the state explosion problem is to exploit
concurrency. Two actions z and y (e.g., program statements) are said to
be concurrent if executing zy is equivalent to executing yz. By considering
only one order of the concurrent actions, or considering the actions to be
unordered, the state explosion can be reduced. Examples of such techniques
are the stubborn sets method of Valmari (1989; 1990), the trace automaton
method of Godefroid and Wolper (Godefroid, 1990; Godefroid and Wolper,
1991), the behavior machines method of Probst and Li (1990), and the Time
Petri Nets method of Yoneda et al. (1989). These methods are limited in that
they only address one source of the state explosion problem—the interleaving
of concurrent actions. They are not effective, for example, on synchronous
finite state machines, which do not involve interleaving of actions. The
symbolic model checking technique, on the other hand, can be effective in
dealing with the state explosion in the synchronous case, as demonstrated
in section 10. Symbolic methods have also been shown to be effective for
asynchronous finite state machines (Burch et al., 1990; Burch et al., 1991b).
In practice, much of the state explosion that results from interleaving can
be handled efficiently by symbolic methods.

We describe the syntax and semantics of a dialect of the Mu-Calculus,
and present a model checking algorithm for Mu-Calculus formulas that uses
BDDs to represent relations and formulas. We then show how our new Mu-
Calculus model checking algorithm can be used to derive efficient decision
procedures for CTL model checking, satisfiability of linear-time temporal
logic formulas, strong and weak observational equivalence of finite transition
systems, and language containment for finite w-automata. In each case, a
Mu-Calculus formula can be directly derived from an instance of the prob-
lem. This formula can be evaluated automatically, eliminating the need to
describe complicated fixed point computations for each decision procedure.
We illustrate the practicality of our approach to symbolic model checking
by discussing how it can be used to verify a simple synchronous pipeline
circuit.

Figure 1: A Binary Decision Diagram

2 Binary Decision Diagrams

Binary decision diagrams (BDDs) are a canonical form representation for
Boolean formulas (Bryant, 1986). They are often substantially more com-
pact than traditional representations such as conjunctive normal form and
disjunctive normal form. Hence, BDDs have found application in many
computer aided design tasks, including symbolic verification of combina-
tional logic. A BDD is similar to a binary decision tree, except that its
structure is a directed acyclic graph rather than a tree, and there is a total
order placed on the occurrence of variables as one traverses the graph from
root to a leaf. Consider, for example, the BDD of figure 1. It represents
the formula (@ A b) V (¢ A d), using the variable ordering ¢ < b < ¢ < d.
Given an assignment of Boolean values to the variables a, b, ¢ and d, one
can decide whether the assignment satisfies the formula by traversing the
graph beginning at the root, branching at each node based on the assigned
value of the variable which labels that node. For example, the assignment
(a — 1,b — 0,¢c — 1,d < 1) leads to a leaf node labeled 1, hence this
assignment satisfies the formula.

Bryant showed that there is a unique BDD for a given Boolean function
together with a given variable ordering. The size of the BDD representing
a given function depends critically on the variable ordering. Bryant also

described efficient algorithms for basic operations on BDDs, such as com-
puting the BDD representations of = f and fVg given the BDDs for formulas
J and g. The only other operations required for the algorithms that follow
are quantification over Boolean variables and substitution of variable names.
Bryant gives an algorithm for computing the BDD for a restricted formula
of the form f|,—¢ or f|,=1. The restriction algorithm allows us to compute
the BDD for the formula Jv[f], where v is a Boolean variable and f is a
formula, as f|qa—o V fla=1. The substitution of a variable w for a variable v
in a formula f, denoted f{v <« w) can be accomplished using quantification,
that is,
fv—w)=3v[(vew)A f]

More efficient algorithms are possible, however, for the case of quantification
over multiple variables, or multiple renamings. In the latter case, efficiency
depends on the ordering of variables in the BDDs being the same on both
sides of the substitution.

BDDs can also be viewed as a form of deterministic finite automata (Ki-
mura and Clarke, 1990). An n-argument Boolean function can be identified
with the set of strings in { 0,1 }" that represent valuations where the function
is true. Since this is a finite language and all finite languages are regular,
there is a minimal finite automaton that accepts this set. This automa-
ton provides a canonical representation for the original Boolean function.
Logical operations on Boolean functions can be implemented by set op-
erations on the languages accepted by the finite automata. For example,
conjunction corresponds to language intersection. Standard constructions
from elementary automata theory can be used to compute these operations
on languages.

3 The Mu-Calculus

A number of different versions of the Mu-Calculus have been proposed. In
this paper we use the notation of Park (1974). It can be shown that this
version of the Mu-Calculus can express any property expressible in other ver-
sions of the Mu-Calculus (Cleaveland, 1989; Emerson and Lei, 1986; Kozen,
1983; Stirling and Walker, 1989).

The Mu-Calculus is similar to standard first-order logic, with the follow-
ing changes. First, as a simplifying assumption, we do not include function
symbols or constant symbols. Also, relational symbols are replaced by re-
lational variables. In formulas of the form R(z1,23,...,2,), the R can be a

relational variable (analogous to a relational symbol in first-order logic), or
it can be a relational term in one of two other forms. The first of the these
forms is

A3/173/27"' 7yn[f]7

where f is a formula and the y; are individual variables. Most often the
y; are free in f, but this need not be the case. Also, the free variables of
f need not be contained in the set of y;. The other form for a relational
term is pP[R], where R is a relational term with some arity n and P is a
relational variable, also with arity n. The term pP|[R] represents the least
fixed point of R. To insure that the least fixed point exists, we require
that R be formally monotone with respect to P, which means that all free
occurrences of P in R fall under an even number of negations.

As an example, let (V, E) be a directed graph, and let Vj and @ be
subsets of V. The Mu-Calculus formula

Vo(y) v 32[Q(z) A E(z,y)]

is true if and only if the vertex y is in Vp or is reachable in one step from a
vertex in). The Mu-Calculus relational term

pQ[AY[Vo(y) v F2[Q(z) A E(z, y)]]]

represents the smallest set) such that

Q = Ay[Vo(y) v F2[Q(z) A E(z,y)]].

This is the set V, of vertices reachable from Vj.

The above description of the syntax of the Mu-Calculus can be formalized
as follows. We assume we are given a finite signature §. Each symbol in
S is either an individual variable or a relational variable with some positive
arity. We recursively define two syntactic categories: formulas and relational
terms. Formulas have the following form:

1. R(z1,22,...,%,), where R is an n-ary relational term and z1, 23, ..., 2,
are individual variables in & not free in R.

2. =f, f Vg, 3z[f], where f and g are formulas and z is an individual
variable in S.

Also, relational terms of arity n have the following form:

1. P, where P is an n-ary relational variable in §.

2. Az1,29,...,2,[f], where f is a formula and 2y, 2,...,2, are distinct
individual variables in S.

3. uwP[R], where P is an n-ary relational variable in § and R is an n-ary
relational term that is formally monotone with respect to P.

The formal definition of when an individual variable or relational variable
is bound or free in some formula or relational term is standard, and will not
be given here. Note, however, that individual variables can be bound by
both the existential quantifier 3 and by the abstraction operator A, while
relational variables can only be bound by the fixed point operator p.

We will assume that ¥V, A, =, and <= are treated as abbreviations in
the usual manner. If R and R’ are n-ary relational terms we write =R as
an abbreviation for Azy,...,z,[R(21,...,2,)], and we write RV R’ as an
abbreviation for

A2ty z2p[R(21, oy 20) V R (21,00, 2]
The relational term v P[R] is introduced as an abbreviation for
P[P R(P — (=P))]

and denotes the greatest fized point of an n-ary relational term R, where
R(P < (=P)) denotes the relational term formed from R by substituting
— P for the free instances of P.

The truth or falsity of a formula is determined with respect to a model
M = (D,Igr,Ip) where D is a non-empty set called the domain of the
model, Ir is the relational variable interpretation and Ip is the individual
variable interpretation. More specifically, for each individual variable vy,
Ip(y) is a value in D, and for each n-ary relational variable P, Ir(P) is
an n-ary relation on the set D. In this paper, the domain of a model
will always be finite. For a given domain, let Zp and Zp be the set of
all possible individual variable interpretations and the set of all possible
relational variable interpretations, respectively.

The semantic function D maps formulas to elements of

(Zr — (Ip — {true, false}));
and n-ary relational terms to elements of

(Ir — (Ip — 2PM)Y),

where 2(P™) denotes the set of n-ary relations on D. The semantic function

D is defined inductively on the structure of formulas and relational terms.
First, we define D on formulas. If R is an n-ary relational term, then

D(R(z1,---,2.))UR)UD)

is true if and only if

<ID(Z’1), e 7ID(Zn)> € D(R)(IR)(ID).
If f and g are formulas, then

D(=f)Ur)(Ip)=~(D(f){r)ID))
D(fV g)Ur)Ip) =
D(f)Ur)(Ip)V D(9)Ir)(UD)
D(3=[f))Ur)Up) =
de € D[D(f)Ur)Up(z — €))].

Next, we define D on relational terms. The first two cases are given by
D(P)(Ur)(Up) = Ir(P),

D(Az1, ...,z [f/)Ur)(Ip) =
{{e1,...,en) €ED" : D(f)Ur)Ip(z1 — €1,...,2n — €,))}.

Finally,
D(uPLR]) = 7,

where Z is the subset of D™ that is the least fixed point (under the inclusion
ordering) of the equation

Z =D(R)Ir(P — Z))(Ip).

It is clear from elementary fixed point theory that the least fixed point exists,
since R is formally monotone with respect to P.

If M is a model and f is a formula, then we will write M |= f to indicate
that f is true in M according to the above semantics.

4 Model Checking Algorithm

Model checking is the process of determining whether a given formula f
is true in a given model M. In this section, we present a model checking

algorithm for the Mu-Calculus that uses BDDs as its internal representation.
First, we describe the algorithm for the Boolean domain D = {0,1}. Later
we show that a model with any finite domain can be encoded as a model with
the Boolean domain, hence our model checking algorithm is fully general.

The algorithm is divided into two functions, Bpby and BpbDg, which
recurse over the structure of formulas and relational terms, respectively
(Figure 2). We assume here that the syntactic correctness of the formula
has already been checked, including the formal monotonicity requirement.

The value of each relational variable in a relational interpretation Iy is
represented by a BDD, using a set of place-holder (dummy) variables not in
the signature §. We refer to these variables as dy,ds, . .., where d; is used to
stand for the ¢th argument of a relation. Thus, an n-ary relation represented
by a BDD is said to hold for some arguments z1,...,z, if and only if the
interpretation (d; < @1,...,d, — w,) satisfies the BDD. In many practical
instances, this representation of a relation is much more compact than an
enumeration of its elements.

The function BpDy takes two arguments: a formula f and a relational
variable interpretation Ir, which assigns values to the free relational vari-
ables in f. It returns a BDD which has the following property: Bop¢(f, Ir)
is satisfied by a given interpretation Ip for the individual variables if and
only if f is satisfied by the model M = (D,Ig,Ip). The first case in the
definition treats individual variables as formulas, which is possible because
the domain D is Boolean. The function BDDATOM(v) returns a BDD that
is true if and only if v = 1. The next three cases in the definition derive
directly from the respective semantic definitions for BDDs and Mu-Calculus
formulas and should require no explanation. The algorithms for BhbDAND
and BDDNEGATE were described by Bryant (1986). The implementation
of BppEX1sTS in terms of disjunction and restriction was discussed in Sec-
tion 2. The last case, application of a relational term R, uses the function
BpDpg to find a representation of the relational term R (under the inter-
pretation Ig), then substitutes the argument variables zq,...,z, for the
place-holder variables dy,...,d,.

The function BDDp takes as arguments a relational term R and a rela-
tional interpretation Ig. It returns a BDD which represents the relational
term in the manner described above. Since the relational term may have free
individual variables, the BDD may contain both the place-holder variables
and the individual variables of the logic. Thus, given an interpretation Ip
for the individual variables, and an interpretation I, for the place-holder
variables, BDDR(R, Ir) is satisfied if and only if the relation D(R)(Igr)(Ip)

function Bppy(f : formula, Ig : rel-interp) : BDD;
case
f is an individual variable:
return BppAToMm(f);
[is of the form f; A fo:
return BODAND(BDD#(f1,1Rr), BoDs(f2,1R));
[is of the form - f;:
return BODNEGATE(BDD(f1, IR));
f is of the form Jz[f]:
return BopExisTs(z, Boos(f, Ir));
f is of the form R(zq,...,z,):
return BoDR(R, IR)(dy «— x1,...,d, — ,);
end case;

function BDDR(R : rel-term, Ip : rel-interp) : BDD;
case
R is a relational variable:
return Ip(R);
R is of the form Azq,...,z,[f]:
return BoD(f, Ip){x1 — di,..., 2, — d);
R is of the form pP[R']:
return FIXEDPoINT(P, R, Ip, FALSEBDD);
end case;

function FIXEDPOINT(P : rel-var, R :rel-term, Ip : rel-interp,
Z :BDD) : BDD;
let 7' = BoDR(R,IR(P — 7));
if Z' = Z then return Z
else return FIXEnPoINT(P, R, IR, Z');

Figure 2: Mu-Calculus Model Checking Algorithm.

10

contains the n-tuple (14(dy),...,14(dy)), where n is the arity of R.

The first case in the definition of BDDg, a relational variable, simply
returns the BDD representation of the variable in the interpretation Ig.
The second case, lambda abstraction, produces a BDD with place-holder
variables dy,...,d, substituted for the variables x1,...,x,. The most inter-
esting case involves the fixed point operator p. To find the fixed point of a
relational term with respect to a relational variable P, we use the standard
technique for finding the least fixed point of a monotonic function with a
finite domain. This computes the fixed point by a series of approximations
Zo, 71, ..., beginning with the empty relation (which is represented by the
BDD constant FALsEBDD). To compute Z;11, we let the interpretation of
P be Z;, while evaluating the relational term R using BDDg. Since the do-
main is finite and R is formally monotone with respect to P, the series must
converge to the least fixed point. Convergence is detected when Z;11 = Z;.
Note that testing for convergence is easy, since testing BDDs for equivalence
is a constant time operation.

A performance improvement can be realized in the above fixed point
algorithm by observing that any subterms or subformulas of R which do
not have P as a free variable will not change in their evaluation from one
iteration to the next. Thus, the evaluations of these terms do not need to be
recomputed. For this reason, it is useful when possible to rewrite formulas
so that fixed point subterms contain fewer free relational variables.

In order to do model checking over a non-Boolean (but finite) domain
D, we use an encoding function ¢ : {0,1}" — D which maps each Boolean
vector of length m to an element of D. This function must be surjective,
but it need not be injective. The minimum possible value of m is [log, | D|],
but encodings with a larger number of bits are also possible. Using such an
encoding, we construct a corresponding model M’ over the Boolean domain.
If R is an n-ary relation symbol in the model M, then R’ is a relation of
arity mn in M’, constructed by the following rule:

R'(z1,...,2,) & R(é(21),...,90(%,))

where z; is a shorthand for m Boolean variables encoding z;. In order to
check the truth of a given formula f, we replace each individual variable
in the formula with a vector of m Boolean valued variables, and check the
resulting formula f’ in the model M’. The homomorphism between M and
M’ guarantees that M |= f if and only if M’ |= f'.

The choice of an encoding function ¢ and an ordering for the BDD
variables has a substantial impact on the efficiency of the model checking

11

algorithm. For digital circuits, the choice of encoding is generally trivial,
since all components of the state are Boolean valued to begin with.

5 Iterative Squaring

It is often possible to rewrite a Mu-Calculus formula or relational term so
that it can be analyzed more efficiently by the model checking algorithm.
In this section we describe a systematic method for rewriting relational
terms, called the iterative squaring transformation, that can result in an
exponential reduction in the number of iterations necessary to compute fixed
points. We begin by showing how the iterative squaring transformation can
be applied to a particular relational term. Later we describe more general
conditions under which the transformation can be applied.

5.1 Transitive Closure

Let W be the relational term

pQ[Ay[Vo(y) v 32[Q(x) A E(z,y)]l],

which describes the set V, of vertices reachable in the directed graph (V, E)
from the set of vertices Vj (see section 3). When the model checking al-
gorithm is applied to W, it requires n iterations to compute the set V,, of
vertices reachable via a path of length n or shorter. Thus, the number of
iterations is linear in the diameter of the subgraph (V., E’), where £’ is
the set of edges in F connecting only vertices in V.. However, a standard
technique can be used to rewrite W so that the model checking algorithm
converges faster. The first step is to compute the transitive closure of F,

E. = pP[Ae,y(E(z,y) vV Jw[P(z,w) A P(w,y)]]).

Let F, be the binary relation computed by the model checker after n iter-
ations in the computation of F,. The following theorem can be proved by
induction on n.

Theorem 1 For all vertices y and non-negative integers n,

Fz[Vo(z) A Enga(z,y)] <= Van(y).

12

The number of iterations necessary to compute F, is logarithmic in the
diameter of (V, E). If the diameters of (V, E) and (V,, E') are roughly the
same (the usual case in practice), this leads to a significant reduction in
the number of iterations needed to compute V,. However, iterative squar-
ing can be impractical if the BDDs needed to represent the intermediate
computations become too large.

5.2 General Transformation

We consider r-ary relational terms of the form pQ[R] or vQ[R], where R is
some r-ary relational term. We further restrict R to be of the form (using
y as a shorthand for yq,...,y,),

Ay[S(y) v 32[Q(z) A N (z,9)]]-

where § and N are relational terms that do not have @) as a free variable. It
may seem overly restrictive to require that terms be of this form. However,
nearly all the Mu-Calculus terms that we have used as specifications in
practice can be written in this form.

The relational term p@Q[R] is analogous to the relational term W de-
scribed above. Recall that W represented the set V., which is the set of
vertices reachable from V; in the graph (V, £). The analogy is clear if we
let V' be the set of r-tuples over the domain D, let £ be N, and let Vi be 5.
Under this analogy, pQ[R] represents Vi, the set of vertices reachable from
S via N.

We can re-express puQ[R] in terms of the transitive closure of N. This
allows us to use iterative squaring to compute the least fixed point. Define
the relational term T such that

T= MP[/\Q?,@LN(.%,’!]) k4 HE[P(E,’JJ) A P(ﬂ),?j)”]’

which is the transitive closure of N. The set of vertices reachable from S
via N can be expressed as

Ay[S(y) v 3z[S(z) A T(z,9)]]-

This observation provides the intuition behind the proof of the following
theorem.

Theorem 2 pQ[R] = Ay[S(y) Vv Iz[S(z) AT(Z,7)]].

13

There is a straightforward relationship between the least and greatest
fixed points. We claim that g is in vQ[R)] if and only if y is in p@Q[R] or
y can be reached from some z that is on a cycle in the graph of N. The
formula T'(z,z) is true if and only if Z is on a cycle. Assuming that the
domain D is finite, we have the following theorem:

Theorem 3 vQ[R] = pQ[R] Vv Ay[3z[T(z,z) N T(Z,7)]]
Proof. Let
Z

pQR] v Ay[3z[T(z, z) A T(Z, y)]]
= Ay[S(y) v Iz[S(z)ANT(z,y)] Vv Iz[T(z,2) AT (z,9)]]

It is straightforward (but tedious) to show that Z is a fixed point of R(Q), so
we omit this argument. It remains to show that Z is the greatest fixed point,
that is, if) = R(Q), then @ C Z. Suppose that Zg is an element of Q). It
follows that Zg is an element of R(Q), hence S(Zo)Vv3IZ[Q(Z)AN(Z, o) holds.
Thus, z¢ is in 5, or Zp has a predecessor in). Under the first condition,
it follows immediately that zg is in Z. Under the second condition, there
exists an z; such that N(Z1,Zg) and Q(Z1) both hold. Since z; is in @,
we can continue the above process, generating a sequence Zg,Z1,... where
N(Z;41,%;) holds for all ¢. Either this sequence terminates at some z; in
S, or it is infinite. In the terminating case, T(Z;, Zo) holds, since there is a
path from z; to Zg. Hence z; is a witness for 3z[S(z) A T(Z, Zg)], so Zg is in
Z. In the infinite case, there must exist 0 < m < n such that z,, = z,,, since
we have assumed the domain is finite. In this case T(z,z) holds, where z is
the common value of z,,, and z,,. Thus 3z[T(z,z) AT (%, o) holds, implying
that g is in Z. We have shown that in all cases, if) = R(Q)) and Z¢ is in
Q), then Z¢ is in Z. Thus, Z is the greatest fixed point of R(Q)). O

The iterative squaring theorems can often be applied more than once
to terms that have several fixed point operators. For example, consider the
directed graph (V, E) described earlier. The relational term

1= vP Vo wQ [MEel(P() v Q&) A Ny,)]

represents the set of vertices y in Vj such that there is a path starting at y
that passes through a vertex in Vg infinitely often. Theorems 2 and 3 can
be used twice to show that R is equal to

Ay[Vo(y) A Je[Vo(a) AT (z,2) AT (y,2)]].

14

Unless otherwise noted, all the Mu-Calculus relational terms used in
the remainder of this paper can be computed using the iterative squaring
technique. As a result, the number of fixed point iterations can be made
logarithmic in the cardinality of the domain.

6 Computation Tree Logic

Computation Tree Logic (CTL) is a propositional, branching-time, temporal
logic (Clarke et al., 1986). Each of the usual forward-time operators of
linear temporal logic (G globally or invariantly, F sometime in the future,
X nezxttime and U wuntil) must be directly preceded by a path quantifier.
The path quantifier can either be an A (for all computation paths) or an E
(for some computation path). Thus, some typical CTL operators are AG f,
which holds in a state provided that f holds at all points along all possible
computation paths starting from that state, and EF f, which holds in a state
provided that there is a computation path such that f holds at some point
on the path.

In our description of the syntax and semantics of CTL, we specify the
existential path quantifiers directly and treat the universal path quantifiers
as syntactic abbreviations. Let A be the set of atomic propositions, then:

1. Every atomic proposition p in A is a formula in CTL.

2. If f and g are CTL formulas, then so are = f, fA g, EXf, E[fUg| and
EGY.

The semantics of a CTL formula is defined with respect to a labeled state
transition graph or Kripke structure M = (A,S,L,N,Sy), where A is a set
of atomic propositions, S is a finite set of states, L:S5 — 24 is a function
labeling each state with a set of atomic propositions, N C 5 x 5 is a total
transition relation, and Sy is the set of initial states. A path is an infinite
sequence of states sq, s1,Sz,...such that N(s;,s;41) is true for every .

The propositional connectives = and A have their usual meanings of
negation and conjunction. The other propositional operators can be defined
in terms of these. X is the nexttime operator. EXf is true in a state s
of M if and only if s has a successor ¢ such that f is true at ¢. U is the
until operator. E[fUg] is true in a state s of M if and only if there exists a
path starting at s and an initial prefix of the path such that g holds at the
last state of the prefix and f holds at all other states along the prefix. The
operator G is used to express the invariance of some property over time.

15

EG [is true at a state s if there is a path starting at s such that f holds at
each state on the path.
We also use the following syntactic abbreviations for CTL formulas:

o AXf = -EX~f which means that f holds at all successor states of
the current state (f must hold at the next state).

e EFf = E[trueUf] which means that for some path, there exists a
state on the path at which f holds (f is possible in the future).

e AFf = -EG-f which means that for every path, there exists a state
on the path at which f holds (f is inevitable in the future).

e AGf = -EF~-f which means that for every path, at every node on
the path f holds (f holds invariantly along all paths).

e A[fUyg] = -E[-gU-f A ~g] A "EG~-g which means that for every
path, there exists an initial prefix of the path such that g holds at the
last state of the prefix and f holds at all other states along the prefix

(f holds until g holds, along all paths).

6.1 CTL Model Checking

Checking whether a CTL formula f is true of a Kripke structure M =
(A,5,L,N,Sp) can be reduced to checking whether a Mu-Calculus formula
f' is true of a structure M’ = (S5,Ir,Ip). In the reduction, Ir provides
the obvious interpretations for N and Sp; it also interprets each atomic
proposition p in A to be a unary relation such that Ir(p)(s) is true if and
only if p € L(s). The individual variable interpretation Ip is not relevant
since f’is defined to have no free individual variables.

The reduction of a CTL formula f to a Mu-Calculus formula f’ is best
understood by viewing CTL formulas as abbreviations for Mu-Calculus re-
lational terms. In this view, if the CTL formula f is an abbreviation for the
Mu-Calculus relational term R, then fis true at state s if and only if R(s) is
true. If f has no temporal operators, then it represents the relational term
R that has exactly the same syntax as f. It remains only to consider CTL
formulas of the form EX f, EG f or E[fUg]|. For the remainder, we identify
a CTL formula f with the Mu-Calculus relational term that it represents.

The CTL formula EX f is true of a state s if and only if there exists a
state ¢ such that f is true of ¢ and N(s,?) is true. We therefore define EX f

16

to be a syntactic abbreviation for the Mu-Calculus relational term
As[F[f(t) A N(s,1)]].

The Mu-Calculus expansions for EG and EU are based on a charac-
terization of the CTL operators as fixed points of predicate transformers.
The fixed points can be computed using either direct iteration or iterative
squaring.

The fixed point characterization for EG is derived from the identity

EGf = f A\EXEG/.

It is straightforward to show that not only does EG f satisfy this equation,
it is the greatest fixed point of the equation. Thus,

vQ[f A EXQ)
= VQIAsLf(s) A Q) A N (s,)]

EG/f

The operator EU has a fixed point characterization that is similar to the
one for EG. However, this time the characterization is the least fixed point
of the corresponding predicate transformer rather than the greatest:

E[fUy]

gV (fNEXE[fUg])
1Qg v (f A EXQ)]
= pQ[As[g(s) vV (f(s) A3[Q(1) A N(s,1)])]]-

Once a CTL formula f has been transformed into a Mu-Calculus rela-
tional term R, it is still necessary to construct a Mu-Calculus formula f’
that is true if and only if f is true of all the states in Sy5. One such f’is

I =Vs[So(s) = f(9)]

As described in section 4, the Mu-Calculus model checking algorithm re-
quires encoding the domain in terms of a Boolean domain. For Mu-Calculus
formulas derived from CTL formulas, it is convenient to encode each state in
the domain with the set of atomic propositions that are true for that state.
This requires that no two distinct states have the same labeling of atomic
propositions.

17

6.2 Fairness Constraints

Next, we consider the issue of fairness. In many cases, we are only inter-
ested in correctness along fair computation paths. For example, we may
wish to consider only those computations in which some resource that is
continuously requested by a process will eventually be granted to the pro-
cess. This type of property cannot be expressed directly in CTL. In order
to handle such properties we must modify the semantics of the logic slightly.
A fairness constraint can be an arbitrary CTL formula. A path is said to
be fair with respect to a set of fairness constraints if each constraint holds
infinitely often along the path. The path quantifiers in CTL formulas are
now restricted to fair paths. In the remainder of this section we describe
how to translate CTL formulas to Mu-Calculus relational terms that reflect
the modified semantics. We assume the fairness constraints are given by
a set of CTL formulas C' = ¢4,...,¢,. We write EcX f and Ex[fUyg], for
example, to denote temporal operators with fairness constraints C'.

Consider the formula E¢ G f, which is true of a state s when there ex-
ists a path beginning at s in which f holds globally (invariantly) and each
formula in C holds infinitely often. The set of such states Z is the largest
set satisfying the following two conditions:

1. All of the states in Z satisfy f, and

2. for all ¢, € C, for all s € Z, there is a path of length one or greater
from s to a state satisfying c; such that all states on the path satisfy
f.
It is easy to show that if these conditions hold, each state in the set is the
beginning of an infinite path on which f is always true, and every formula
in C holds infinitely often. This gives us the characterization

EcGf=vZ[f A)\ EXE[fU(Z A c)]].
k=1

The unfair CTL operators on the right side of the equations can be translated
into Mu-Calculus relational terms as described above. Note that in this case,
there is a nested fixed point since EU is an abbreviation for a least fixed
point.

The cases of E¢c X f and E¢[fUg]| are a bit simpler. Define the set of all
states which are on some fair computation as h = E¢G true. Then,

EcX(f) = EX(f Ah),
Ec[fUg] = E[fU(g A h)].

18

7 Propositional Linear Temporal Logic

The tableau method for testing the satisfiability of propositional linear tem-
poral logic (PTL) formulas (Manna and Wolper, 1981) can be implemented
by translating a PTL formula into a Mu-Calculus formula which is true if
and only if the PTL formula is satisfiable. This gives a symbolic procedure
with the advantage that, in some cases, a large tableau can be represented
by a relatively small BDD.

Fujita and Fujisawa (1989) describe a verification procedure based on lin-
ear temporal logic that uses binary decision diagrams to represent the transi-
tion conditions in automata derived from temporal logic formulas. However,
they represent the states of the automaton explicitly, so their technique still
suffers from the state explosion problem.

There are many dialects of PTL depending on the modal connectives
that are defined. We choose a small, standard dialect:

1. atomic propositions A (written p, ¢, etc.),
2. =f, fVvg, Xf,and fUg when f and g are PTL formulas.

Our technique can be extended easily to additional or alternative modal
connectives.

Asin CTL, X f means that f holds in the next state and fUg means that
f is true in every state until g holds. To formalize this, let ¢ € [A — {0,1}]*
be a sequence of truth assignments to the atomic propositions, and let o;
be the ith suffix of o (i.e., 0;(j) = o(j + 7) for all j € w). The semantics of
PTL formulas can be defined as follows:

ol=p iff o(0)(p)=1 when p € A4,
ocE-f if o[,

cEfvg iff of=forolg,

cEXf il o1/,

o= fUg iff Fi:(o;fFgandVj<i:o; = f).

The tableau associated with a PTL formula f is a Kripke structure whose
atomic propositions represent the truth values of the particular formulas
constructed from f. By representing the tableau symbolically, we can use the
symbolic CTL model checking procedure to determine whether the formula
[is satisfiable. A state of the tableau is a Boolean vector z. With each
formula f, we associate a component z ¢ of the state vector. A function o f)
associates a relational term in the Mu-Calculus with each PTL formula f.

19

This term represents the set of states of the tableau labeled with the formula
f. The function « is defined recursively over the structure of PTL formulas

as follows:
a(p) = Azfz,] ifpe A,
a(=f) = -a(f),
a(fvyg) = a(f)Valg),
a(Xf) = Azlexyl,
a(fUg) = a(g)V

(a(f) A Az[zx(rugl)

Notice that for a given formula f, the only components of the state vector
used in a(f) are the atomic propositions and the formulas Xg, where Xg is
a subformula of f, and X(¢gUh), where gUh is a subformula of f. We call
these subformulas the elementary subformulas of f, or el(f). Using only
the elementary formulas in the tableau reduces the number of Boolean state
variables. The elementary subformulas can be defined recursively as follows
(where f and g are any PTL formulas):

ellp) = {p} ifpeA,
el(=f) = el(f),
el(fvyg) = el(f)Uellyg),
e(X[f) = {X[}uel(f),
el(JUg) = {X(fUg)}Uel(f)Uel(g).

The transition relation R of the tableau is defined such that the elementary
formula X f is true in the current state if and only if f is true in the next
state. Thus,

R =)z,z' A a(Xg)(z) & a(g)(z').
Xg € el(f)

The set Sy of initial states of the tableau is the set satisfying f. Thus,
So = a(f). The formula f is satisfiable if and only if there is an infinite
path in the tableau such that

e [is true in the initial state, and

20

o for all subformulas gU#R, if gUh is true in some state, then eventually
h is true in some later state.

This is equivalent to the CTL formula
EcGtrue
with the set of fairness constraints
C = {-a(gUh) VvV a(h) | gUh occurs in f}.

If there is an infinite path satisfying all of the formulas in C' infinitely often,
then for all subformulas gU#, it is not the case that gUh holds forever after
some point while h remains false. Hence, there is a path satisfying f.

The test for satisfiability of a formula f proceeds in the following steps.
The set of elementary formulas of f is computed using its recursive defi-
nition. The symbolic (BDD) representations of R and Sy are computed,
using the recursive definition of a. The set C' of fairness constraint formulas
is constructed. Finally, the CTL formula EcGtrue is translated into the
Mu-Calculus using the procedure of section 6.2. This formula is evaluated
using the symbolic Mu-Calculus model checking procedure of section 4 to
determine whether the formula f is satisfiable.

8 Observational Equivalence

In this section, we describe how to use the Mu-Calculus for expressing strong
equivalence and weak equivalence of finite transition systems. This makes
it possible to use the BDD-based Mu-Calculus model checking algorithm
described earlier for deciding these equivalences. A finite transition system
is a 4-tuple (9, s0,%,A), where S is a finite set of states, so is the initial
state, Y. is a finite set of actions, and A C 5 x X x S is the transition
relation (Milner, 1980; Milner, 1983).

8.1 Strong Equivalence

Let Mg and My be two finite transition systems on the same set of actions
Y. That is, let Mg = (5,s0,2,Ag) and My = (1,19,%,Ar). The strong
equivalence relation (written ‘~’) is a subset of S x T'. The two finite tran-
sitions systems Mg and My are said to be strongly equivalent if and only

21

if sp ~ tg. The strong equivalence relation is the greatest fixed point of the
function

such that F(R) is the set of all pairs (s,?) for which
o YoVs' if Ag(s,o,s") then 3¢’ such that Ap(¢,0,t") and R(s',t'), and
o VoVt if Ap(t,0,t") then 35" such that Ag(s,o0,s") and R(s',1').

In order to compute this equivalence using the BDD-based Mu-Calculus
checking algorithm, it remains only to assemble the appropriate domain
and interpretations, and to express the above condition in the Mu-Calculus.
Let the domain D be the union of S, 7" and ¥ (which are assumed to be
disjoint). The relational interpretation /p consists of the relations Ag and
Ar, and the individual interpretation Ip consists of sg and t{g. Let F' be
the Mu-Calculus relational term

As, t[Vo,s'[As(s,0,s") =
F[Ar(t,o,t") A R(s",)]
Ao, U'[Ar(t,o,l) =
3s'[As(s, 0,8) N R(s', 1)]]].
Then F'(s,t) is true if and only if (s,t) is an element of F(R). Thus, Mg
and Mt are strongly equivalent if and only if v R[F’](so,%0) holds. This can

be evaluated with the BDD-based model checking algorithm, although the
iterative squaring transformation cannot be used.

8.2 Weak Equivalence

Let 7 be a distinguished action in the set 3, and let the relation H be the
reflexive transitive closure of Az, y[A(z,7,y)]. That is, H(s,t) is true if and
only if there is a path from s to ¢t labeled by a sequence of zero or more 7
actions. Also, let A* be such that

A*(s,0,t) = JaFy[H(s,z) N A(z,0,y) AN H(y,1)].

The weak observational equivalence relation is the greatest fixed point of

the function
G : QSXT N 25XT7

such that G(R) is the set of all pairs (s,?) for which

22

o Vs'Vo, if A%(s,0,s") then 3¢’ such that A% (¢,0,t') and R(s',t'), and
o Vi'Vo,if A%(¢,0,t') then 35" such that A%(s,0,s") and R(s',1').

From this point, the translation of weak equivalence into the Mu-Calculus
is completely analogous to the translation for strong equivalence.

9 w-Automata

Finally, we discuss symbolic Mu-Calculus based algorithms for deciding lan-
guage containment between finite w-automata. We consider Biichi automata
in detail, and also discuss a general method that is applicable to a large class
of w-automata.

A finite Biichi automaton is an ordered 5-tuple (9,s0,%, A, B), where
S is a finite set of states, sg € S is the initial state, X is a finite alphabel,
A C S5 x X xS is the transition relation, and B C 5 is the acceplance set.
The automaton is deterministic if for all s € 5 and o € 3, there exists
exactly one ¢ € § such that A(s,o,¢) holds. An infinite sequence of states
to,t1,t2,... € 5% is a path of a Biichi automaton if there exists an infinite
sequence og,01,03,... € 3% such that

<ti,Ui,ti+1> €A

for all ¢ > 0. A sequence o0g,01,09,... is accepled by a Biichi automaton
if the corresponding path tg,11,13,. .. goes through a one or more elements
of B infinitely often. The set of sequences accepted by an automaton M is
called the language of M and denoted L£L(M).

To determine whether the language of a Biichi automaton M is con-
tained in the language of a Biichi automaton M’ (with the same alphabet),
we define a Kripke structure M" representing the product of M and M’, and
write a formula in CTL which is true of M" if and only if every sequence ac-
cepted by M is also accepted by M’. This formula can be translated into the
Mu-Calculus and evaluated using the symbolic model checking algorithm.

Let M" be a Kripke structure (4,5 x S, L, R, S{]), where

o A= {p,p'} is the set of atomic propositions,

. 56/ = {<50756>}7
o (s,sY=piff s€ B,

23

o (s,sYEp iff & €B,
o (s,8"YR(t,t') iff Jo € ¥ such that (s,0,t) € A and (s',0,t') € A,

Recall that in Section 6 we showed how to encode Kripke structures sym-
bolically. The transition relation of the Kripke structure M" is

R =)s, 8 t,U'[Fo[A(s,0,t) A A'(S,0,1)]].

The atomic proposition p can identified with the Mu-Calculus relational
term As, s'[B(s)] that represents that set of states that satisfy p. Similarly,
p is identified with the relational term As, s'[B’(s)]. The set of initial states
is

0= As, 8 (s =s0) A (8" = sp)].

In (Clarke et al., 1990), it is shown that, if M’ is deterministic, then
L(M) C L(M') if and only if

M" = A(GFp = GFy').

Note that the formula above is not a CTL formula since there are path
operators that are not immediately preceded by path quantifiers. However,
it is equivalent to AG AFp' under the fairness constraint “infinitely often p”.
Thus, £(M) C L(M') holds if and only if the formula A¢G AcFp’ holds,
where C' = {p}. Using the results of section 6.2, and the above definitions for
R, S{, p and p’, this formula can be translated into a Mu-Calculus formula
that can be evaluated using the Mu-Calculus model checking algorithm of
section 4.

Another possible approach to the language containment problem makes
use of the iterative squaring technique for computing transitive closures.
Let 1™ be the set of all pairs of states of the Kripke structure such that the
second state can be reached from the first without passing through B’. This
is the transitive closure of

T =Xs, s, t,U'[R(s, s, t,1") N=B'(s) A= B'(1')].
Using iterative squaring,
1™ = pQAs, s, 1, U'[T(s, ', 1,1") v Ju, w'[Q(s, 8", u, w') A Q(u, ', 1,1)]]].

The language of M is contained in the language of M’ iff there is no path
to a state (s,s’) in B such that (s,s’) is on a cycle not passing through

24

B'. That is, L(M) C L£(M') if and only if -EF As,s'[T*(s,s’,s,s")]. The
operator EF can also be evaluated using iterative squaring. This technique
reduces the number of iterations to the log of the diameter of the transition
relation R. Using the technique based on CTL model checking with fairness
constraints, the number of iterations may be as high as the square of the
diameter, because of the nested fixed point operators. However, in many
cases the BDDs needed to construct the transitive closure are impractically
large. As a result, if the diameter of the state space is small, the nested
fixed point method may be preferable.

While deterministic Biichi automata cannot express the complete class
of w-regular languages, algorithms for language containment for more ex-
pressive types of deterministic w-automata (e.g., Muller automata) can be
derived in a similar fashion from results in (Clarke et al., 1990). These
algorithms require a more expressive class of fairness constraints than we
have considered here. Mu-Calculus based algorithms for this class of fair-
ness constraints exist, and can be derived either from the PTL satisfiability
algorithm, or from results of Emerson and Lei (1986).

10 Empirical Results

Using BDDs for testing Boolean satisfiability is only efficient in a heuristic
sense. The satisfiability problem is, of course, NP-complete; the only claim
that is made for BDDs is that they perform well for certain useful classes of
Boolean functions. Likewise, using BDDs for representing relations in Mu-
Calculus model checking is only of heuristic value, and does not improve the
asymptotic complexity of model checking. Therefore, in order to evaluate the
method, we need empirical results showing the performance of the method
on some problems of practical interest.

Here we briefly present some performance results for CTL model checking
on a class of simple synchronous pipelines, which include data path as well
as control circuitry. The number of states in these systems is far too large
to apply traditional model checking techniques, but we have obtained very
encouraging results using the BDD method.

The circuits we have used as examples are pipeline circuit that perform
three-address logical and arithmetic operations on a register file. The com-
plete state of the register file and pipe registers are modeled. The pipelines
have three stages: the operands are read from the register file, then an ALU
(Arithmetic Logic Unit) operation is performed, then the result is written

25

Read Port A Write Port C

» Addr
Data) |Addr [«
Register File
» Addr Data
— Data
Read Port B
> Control |
Inst.
Reg. l l
™ Alu

R%igl;l)s?ter F{Eigl%gter

Register Bypass Path

Figure 3: Block diagram of simple pipeline design

back to the register file. The ALU has a register bypass path, which allows
the result of an ALU operation to be used immediately as an operand on
the next clock cycle, as is typical in RISC instruction pipelines. The inputs
to the circuits are an instruction code, containing the register addresses of
the source and destination operands, and a STALL signal, which indicates
that no instruction is available. When this occurs, a “no-operation” is prop-
agated through the pipe. A functional block diagram of a typical pipeline
is given in figure 3.

Since vectors of Boolean values are used to represent binary numbers in
these designs, it is useful to introduce some notation for vectors of proposi-
tions in logical formulas. First, we extend the standard logical and modal
operators to vectors of propositions in a component-wise manner. For ex-
ample,

41 7 nAa

D2 92 P2 A g2
A VAR R)

Pn Gn Pn N Gn

26

and

D1 Fp

P2 Fp,
Fl =)

Pn Fpn

The latency in the example pipelines is three clock cycles. For this
reason, the specification of the pipeline cannot be given in a straightforward
manner using simply pre-conditions and post-conditions on operations. We
can, however, use temporal operators and the above notation to specify the
behavior of the pipeline, taking into account the pipe latency. When we
specify a register transfer level operation for the pipeline, it is understood
that the results of the operation will not affect the register file until three
clocks cycles in the future, and that the inputs to the operation correspond
to the state of the register file two clock cycles in the future. The state of
the register file n clock cycles in the future can be expressed as X"R. A
register transfer specification such as R¢ «— Ry & Ry means that register
c receives the exclusive-or of registers a and b. Taking into account the
pipe latency, this register transfer level specification can be expressed as a
temporal formula in the following way:

(X°R)c = (X’R)a & (X*R)p,

where a, b and c are each bit-fields in the operation code. As similar formu-
las can be derived for other register transfer level expressions, we will write
register transfer expressions in our specifications, with the understanding
that they are to be interpreted as abbreviations for temporal logic formulas
in the above way. Since X"p is a path formula and not a state formula,
it cannot be evaluated directly by the CTL model checker (which can only
evaluate state formulas). We can show, however, that the state of the regis-
ter file R two or three clock cycles in the future is uniquely determined by
the current state of the system. We can show this by automatically checking
the CTL formulas
AG((EX)’R = (AX)’R)

and

AG((EX)’R = (AX)°R).

Thus, we can substitute the state formula (EX)?R for the path formula
X?2R, since the two are equivalent. Likewise, we can substitute (EX)®R for
X3R.

27

Using the above temporal interpretation for register transfer level speci-
fications, we write the specification for our simplest pipeline (which has only
an exclusive-or instruction) as follows:

AG(-STALL = (Rc — Ra @ Ry,)) (1)

and

AGVYc' (¢ # ' VSTALL = (Rer — Rer)).

Recall that the register assignments are abbreviations for CTL formulas.
The latter formula specifies that non-destination registers do not change,
and that if a stall occurs, no registers change.

Figure 4 graphs the performance we obtained when checking formula 1
on a variety of pipelines of this type. The graphs show the total execution
time and the size of the BDD needed to represent the transition relation. In
all cases the register file had four registers. The number of bits per register
varied from 1 to 12. We considered two ALU operations: exclusive-or and
addition. In two cases the ALU performed just one of these operations. In
the third case, the ALU performed both operations. The verifier operated
directly on CTL formulas, which reduces the overhead that would result
from first translating CTL formulas to Mu-Calculus formulas.

A pipeline with 12 bits has approximately 1.5 x 10?° reachable states,
which puts it far outside the range of model checkers like the one reported
by Browne et al. (1986). An 8-bit exclusive-or pipeline required a BDD
with 42,000 nodes to represent the transition relation, and approximately
22 minutes to verify on a Sun 3/60. The execution times in the graph are
for a single processor of an Encore Multimax, which is approximately half
as fast as a Sun 3. The most interesting result is that the number of nodes
in the transition relation BDD is asymptotically linear in the number of bits
per register. As a result, the verification time is polynomial in the number
of bits. The BDD variables were ordered so that all variables in a given bit
position were grouped together. A fixed number of signals, consisting of the
control bits and the ALU carry bit pass from one group to the next. It is
this property of the system that results in the linear growth of the transition
relation as represented by a BDD.

It is also interesting to note that adding an exclusive-or operation to
the addition pipeline roughly doubles the number of nodes in the transition
relation. In general, the transition relation increases in size linearly with the
number of instructions (Burch et al., 1991a). In addition, if the ALU were
able to perform a multiply operation, a barrel shift, or some other complex

28

>1le+06f —~1e+05f
Q S F
§ —— PLUS/XOR &
a) — — Plus GEJ
Q [=
= le+04F
() [
> 1e+05
c
i)
ke
[1le+03¢f
c)
i)
é 1e+04
= 1e+02}
1e+03 i i i i i PR T S | 1e+01 i i i i i PR T S |
1 12 1 12
Data path width (bits) Data path width (bits)

Figure 4: Performance of BDD model checking algorithm on simple pipelines

29

operation which has more than a constant amount of information passing
from one bit position to the next, then the size of the BDD representation
would quickly become unmanageable.

11 Conclusions

We have shown, that by choosing a suitable encoding of the model domain,
and using a compact representation for relations, the complexity of various
graph-based verification algorithms can be greatly reduced in practice (if
not in the worst case). Along the way, we have shown how several of these
algorithms can be concisely expressed in a form of the Mu-Calculus, and
how these expressions can be used to derive efficient BDD-based verification
algorithms. In the circuit examples we studied, the regular structure of
the data path logic was captured by the BDD representation, resulting in
a space complexity which was linear in the number of circuit components
rather than exponential.

The current state of this research, however, leaves open several important
and interesting questions. First, more work is needed in order to charac-
terize the models for which the BDD Mu-Calculus checker is efficient. It
is known, for example, that combinational multiplier circuits do not have
efficient BDD representations (Bryant, 1991). On the other hand, the model
checking algorithm is easily adapted to use other representations, if such are
found to be compact for a useful class of relations. The problem of find-
ing more eflicient structures for representing Boolean formulas has attracted
much attention of late; any results obtained in this area would be immedi-
ately applicable to Mu-Calculus model checking, and hence to the various
verification methodologies treated in this paper.

The second open question is whether the techniques described here could
be profitably extended to other common graph algorithms whose results can
be expressed as relations, such as minimum spanning trees, graph isomor-
phism, etc. For example, if F(u,v) is the edge relation of a directed graph,
then the equivalence relation

A, [E'(u,v) A E'(v,u)]

is true of two vertices if and only if they are in the same strongly connected
component, where E’ is a relational term representing the reflexive transi-
tive closure of F. Practical algorithms that could handle very large graphs

30

compared to current computer storage limitations) would certain eo
pared t t puter storage limitati Id certainly be of
interest.

References

Bose, S. and Fisher, A. L. (1989). Automatic verification of synchronous
circuits using symbolic logic simulation and temporal logic. In Claesen,
L., editor, Proceedings of the IMFEC-IFIP International Workshop on
Applied Formal Methods For Correct VLSI Design, pages 759-764.

Browne, M. C., Clarke, E. M., Dill, D. L., and Mishra, B. (1986). Au-
tomatic verification of sequential circuits using temporal logic. [FEFE
Transactions on Computers, C-35(12):1035-1044.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manip-
ulation. IEEE Transactions on Computers, C-35(8).

Bryant, R. E. (1991). On the complexity of VLSI implementations and
graph representations of boolean functions with application to integer
multiplication. IEEE Transactions on Computers, 40(2):205-213.

Burch, J. R., Clarke, E. M., and Long, D. E. (1991a). Representing circuits
more efficiently in symbolic model checking. In 28th ACM/IEEFE Design
Automation Conference.

Burch, J. R., Clarke, E. M., and Long, D. E. (1991b). Symbolic model
checking with partitioned transition relations. In Proceedings of the
International Conference on Very Large Scale Integration, Fdinburgh,
Scotland.

Burch, J. R., Clarke, E. M., McMillan, K. L., and Dill, D. L. (1990). Se-
quential circuit verification using symbolic model checking. In 27th
ACM/IEEFE Design Automation Conference.

Clarke, E. M., Draghicescu, I. A., and Kurshan, R. P. (1990). A unified
approach for showing language containment and equivalence between
various types of w-automata. In Arnold, A. and Jones, N. D., editors,
15th Colloguium on Trees in Algebra and Programming, volume 431 of
Lecture Notes in Computer Science, Copenhagen, Denmark. Springer-

Verlag.

31

Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic veri-
fication of finite-state concurrent systems using temporal logic specifi-

cations. ACM Transactions on Programming Languages and Systems,
8(2):244-263.

Cleaveland, R. (1989). Tableau-based model checking in the propositional
mu-calculus. Technical Report 2/89, University of Sussex.

Coudert, O., Berthet, C., and Madre, J. C. (1989). Verification of syn-
chronous sequential machines based on symbolic execution. In Sifakis,
J., editor, Automatic Verification Methods for Finite State Systems, In-
ternational Workshop, Grenoble, France, volume 407 of Lecture Notes
in Computer Science. Springer-Verlag.

Emerson, E. A. and Lei, C.-L. (1986). Efficient model checking in fragments
of the propositional mu-calculus. In Proceedings of the First Annual
Symposium on Logic in Compuler Science, Boston, Mass.

Fujita, M. and Fujisawa, H. (1989). Specification, verification, and synthesis
on control circuits with propositional temporal logic. In Darringer,
J. A.and Rammig, F. J., editors, Proceedings of the Ninth International
Symposium on Computer Hardware Description Languages and their
Applications, Washington, D.C. North-Holland.

Godefroid, P. (1990). Using partial orders to improve automatic verification
methods. In (Kurshan and Clarke, 1990). Also in Springer-Verlag LNCS
531.

Godefroid, P. and Wolper, P. (1991). A partial approach to model check-
ing. In Proceedings of the Sizth Annual IEEE Symposium on Logic in
Computer Science.

Kimura, S. and Clarke, E. M. (1990). A parallel algorithm for constructing
binary decision diagrams. In Proceedings: IFEFE International Confer-
ence on Computer Design.

Kozen, D. (1983). Results on the propositional p-calculus. Theoretical Com-
puter Science, 27(3):333-354.

Kurshan, R. and Clarke, E. M., editors (1990). Computer-Aided Verifica-
tion, Proceedings of the 1990 Workshop, volume 3 of DIMACS Series
in Discrete Mathemalics and Theoretical Computer Science. American
Mathematical Society. Also in Springer-Verlag LNCS 531.

32

Manna, Z. and Wolper, P. (1981). Synthesis of communicating processes
from temporal logic specifications. In Kozen, D., editor, Logic of Pro-
grams: Workshop, volume 131 of Lecture Notes in Computer Science,
Yorktown Heights, New York. Springer-Verlag.

Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag.

Milner, R. (1983). Calculi for synchrony and asynchrony. Theoretical Com-
puter Science, 25:267-310.

Park, D. (1974). Finiteness is mu-ineffable. Theory of Computation Report
No. 3, The University of Warwick.

Probst, D. K. and Li, H. F. (1990). Using partial order semantics to avoid
the state explosion problem in asynchronous systems. In (Kurshan and

Clarke, 1990). Also in Springer-Verlag LNCS 531.

Stirling, C. and Walker, D. J. (1989). Local model checking in the modal
mu-calculus. In Diaz, J. and Orejas, F., editors, Proceedings of the Inter-
national Joinl Conference on Theory and Practice of Software Develop-
ment, volume 351-352 of Lecture Notes in Compuler Science. Springer-

Verlag.

Valmari, A. (1989). Stubborn sets for reduced state space generation. In
Tenth International Conference on Application and Theory of Pelri
Nets.

Valmari, A. (1990). A stubborn attack on the state explosion problem. In
(Kurshan and Clarke, 1990). Also in Springer-Verlag LNCS 531.

Yoneda, T., Nakade, K., and Tohma, Y. (1989). A fast timing verifica-
tion method based on the independence of units. In Proceedings of the
Nineteenth International Symposium on Faull-Tolerant Computing.

33

	Carnegie Mellon University
	Research Showcase @ CMU
	6-1990

	Symbolic Model Checking: 1020 States and Beyond
	J R. Burch
	Edmund M. Clarke
	K L. McMillan
	D L. Dill
	L J. Hwang

	tmp.1272560289.pdf.qglkY

