
Distributed
 Computing

HS 2014 Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 10

1 Spin Locks

A read-write lock is a lock that allows either multiple processes to read some resource, or one
process to write some resource.

a) Write a simple read-write lock using only spinning, one shared integer and the CAS op-
eration. Do not use local variables (it is ok to have variable within a method, but not
outside).

b) What is the problem with your lock?

Hint: what happens if a lot of processes access the lock repeatedly?

We now build a queue lock using only spinning, one shared integer, one local integer per process
and the CAS operation.

c) To prepare for this task, answer the following questions:

i) Head and tail of the queue have to be stored in the shared integer. What is the “head”
and the “tail”, and how can they be stored in one integer?

Hint: could the head be a process id? Or is there a much easier solution?

ii) How could a process add itself to the queue?

Hint: you need the local integer of the process for this operation.

iii) When has a process acquired the lock?

iv) How does a process release the lock?

d) Write down the lock using pseudo-code. Do not forget to initialize all variables.

Solution

a) We use the shared integer state to indicate the state of the lock. The lock is free if state
is 0. The lock is in write mode if state is -1. And it is in read-mode if state is n, with
n > 0.

// the shared i n t e g e r
i n t s t a t e = 0 ;

// acqu i r e the lock f o r a read opera t i on
r e a d l o c k (){

whi le (t rue){
i n t va lue = s t a t e . read () ;
i f (va lue >= 0){

i f (s t a t e .CAS(value , va lue+1) == value){
// lock acqu i red
return ;

}
}

}
}

// r e l e a s e the lock
read un lock (){

whi le (s t a t e .CAS(s tate , s ta te−1) != s t a t e) ;
}

// acqu i r e the lock f o r a wr i t e operat i on
w r i t e l o c k (){

whi le (t rue){
i n t va lue = s t a t e ;
i f (s t a t e == 0){

i f (s t a t e .CAS(0 , −1) == 0){
// lock acqu i red
return ;

}
}

}
}

// r e l e a s e the lock
wr i t e un l o ck (){

// no need to te s t , no other p roce s s can c a l l t h i s at
// the same time .
s t a t e .CAS(−1, 0) ;

}

b) Starvation is a problem. Example: if many processes constantly acquire and release the
read-lock, then the state variable always remains bigger than 0. If one process wants to
acquire the write-lock, it will never get the chance.

c) The basic idea behind this lock is a ticketing service as can be found in swiss post offices.

i) The tail is the ticket which can be drawn by the next process. The head denotes the
ticket which can acquire the lock. If we assume an integer consists of 32 bits, then we
can use the first 16 bits for the head, and the last 16 bits for the tail.

2

ii) The process reads the value of the tail, and then increments the tail. This should of
course happen in a secure way, i.e. no two processes have the same ticket.

iii) When its ticket equals the head.

iv) The process increments the head by one.

d) // the shared i n t e g e r conta in ing head | t a i l
shared i n t queue = 0 ;

// the t i c k e t o f t h i s p roce s s
i n t l o c a l = 0 ;

// acqu i r e the lock
lock (){

// 1 . add t h i s p roc e s s to the queue
l o c a l = add () ;
// 2 . wait u n t i l the l ock i s acqu i red
whi l e (head () != l o c a l) ;

}

// add t h i s p roce s s to the queue
i n t add (){

whi le (t rue){
i n t va lue = queue . read () ;
i f (queue .CAS(value , va lue+1) == value){

re turn value & 0xFF ;
}

}
}

// r e tu rn s the cur rent head o f the queue
i n t head (){

i n t va lue = s t a t e . read () ;
r e turn (va lue >>> 16) & 0xFF ;

}

// r e l e a s e s the lock
unlock (){

whi le (t rue){
i n t va lue = queue . read () ;
i n t head = (value >>> 16) & 0xFF
i n t t a i l = value & 0xFF
i n t next = (head+1) << 16 | t a i l ;
i f (queue .CAS(value , next) == value){

re turn ;
}

}
}

2 ALock2

Have a look at the source code below. It is a modified version of the ALock (slides 3/46 ff).

pub l i c c l a s s ALock2 implements Lock {
i n t [] f l a g s = { true , true , f a l s e , . . . , f a l s e } ;
AtomicInteger next = new AtomicInteger (0) ;

3

ThreadLocal<Integer> mySlot ;

pub l i c void lock () {
mySlot = next . getAndIncrement () ;
whi l e (! f l a g s [mySlot % n]) {}
f l a g s [mySlot % n] = f a l s e ;

}

pub l i c void unlock () {
f l a g s [(mySlot+2) % n] = true ;

}
}

a) What was the intention of the author of “ALock2”?

b) Will ALock2 work properly? Why (not)?

c) Give an idea how to repair ALock2.

Hint: don’t bother about performance.

Solution

a) The author wants that two processes can acquire the lock simultaneously.

b) The lock is seriously flawed. An example shows how the lock will fail: Assume there are
n processes, all processes try to acquire the lock. The first two processes (p1, p2) get the
lock, the others have to wait. Process p1 keeps the lock a very long time, while p2 releases
the lock almost immediately. Afterwards every second process (p4, p6, ...) acquires and
releases the lock. One half of all process are waiting on the lock (p3, p5, ...), the others
continues to work (p4, p6, ...). If the working process now start to acquire the lock again,
then they wait in slots that are already in use.

c) A solution would be to increase the size of the array to at least 2 ∗ n and further block
the lock() method if a process holds the other lock for a (too) long time. This way, wrap-
arounds are handled correctly.

Unfortunately FIFO (first in, first out) is still not guaranteed. In a second step one
could make the unlock method more intelligent: instead of jumping two slots, the method
searches for the oldest slot waiting for a lock. To simplify this search, the boolean array
is replaced by an enum (or integer) array holding four states: unused, lockable, working,
and finished. We can use a CAS operation to protect the unlock method against race
conditions (two process may invoke the method concurrently).

pub l i c c l a s s ALock2 implements Lock{

pub l i c enum State {UNUSED, LOCKABLE, WORKING, FINISHED} ;

// >= 2n elements : 2 lockab l e , >= (n−2) unused , n f i n i s h e d
State [] f l a g s = {LOCKABLE, LOCKABLE, UNUSED, . . . , UNUSED, FINISHED , . . . } ;

AtomicInteger next = new AtomicInteger (0) ;
ThreadLocal<Integer> mySlot ;

pub l i c void lock (){
// sp in un t i l s l o t becomes l o ckab l e
mySlot = next . getAndIncrement () ;
whi l e (f l a g s [mySlot%n] != LOCKABLE){}

4

// mark as working
f l a g s [mySlot%n] = WORKING;

// wait f o r other l ock i f i t s p roc e s s i s too slow (l a r g e r array he lps here)
// & mark the s l o t as unused to support wrap−arounds
whi l e (f l a g s [(mySlot − f l a g s . s i z e () + n)%n] != FINISHED){}
f l a g s [(mySlot − f l a g s . s i z e () + n)%n] = UNUSED;

}

pub l i c void unlock (){
f l a g s [mySlot] = FINISHED ; // mark my s l o t as f i n i s h e d . . .

// s e t next unused s l o t to l o ckab l e
i n t index = mySlot + 1 ;
whi l e (t rue){

i f (f l a g s [index%n] != UNUSED)
index++;

e l s e i f (f l a g s [index%n] .CAS(UNUSED, LOCKABLE) == UNUSED)
break ; // next unused s l o t became l o ckab l e

}
}

}

3 MCS Queue Lock

See slides 3/65 ff.

a) A developer suggests to add an abort flag to each node: if a process no longer wants to
wait it sets this abort flag to true. If a process unlocks the lock, it may see the abort flag
of the next node, jump over the aborted node, and check the successor’s successor node.
Modify the basic algorithm to support aborts.

Optional: sketch a proof for your answer.

Hint: Be aware of race-conditions!

b) Assuming many processes may abort concurrently, does your answer from a) still work?
Explain why. If it does not work: modify your algorithm to allow concurrent aborts.

Optional: sketch a proof for your answer.

c) Instead of a locked and an aborted flag one could use an integer, and modify the integer
with the CAS operation. What do you think about this idea? How is the algorithm
affected? How is performance affected?

d) The CLH lock (slide 3/56) is basically the same as an MCS lock. Conceptually the only
difference is, that a process spins on the locked field of the predecessor node, not on its own
node. What could be an advantage of CLH over MCS and what could be a disadvantage?

Solution

a) There is more than one solution, but we can solve this problem without using RMW
registers or other locks. It is important to set and read the flags in the right order: The
unlock method first sets locked, then reads aborted. The abort method on the other
hand first sets aborted, then reads locked. This way if unlock and abort run in parallel,
one of them must already have written its flag before the other can read it. In the worst
case unlock is called twice for some process, but that is not a problem. Unlocking an
already unlocked lock results in no action.

5

pub l i c void unlock (){
i f (. . . mis s ing s u c c e s s o r . . .)

. . . wait f o r miss ing s u c c e s s o r

qnode . next . locked = f a l s e ;
i f (qnode . next . aborted){

i f (. . . qnode . next misses s u c c e s s o r . . .){
i f (. . . r e a l l y no s u c c e s s o r . . .)

r e turn ;
}
e l s e {

. . . wait f o r miss ing s u c c e s s o r . . .
}
qnode . next . next . locked = f a l s e ;

}
}

pub l i c void abort (){
qnode . aborted = true ;
i f (! qnode . locked){

unlock () ;
}

}

b) The solution of a) does not yet work for concurrent aborts. Making the unlock method
recursive will help.

pub l i c void unlock (){
unlock (qnode) ;

}
p r i v a t e void unlock (QNode qnode){

// as be f o r e . . .
i f (. . . mis s ing s u c c e s s o r . . .)

. . . wait f o r miss ing s u c c e s s o r

qnode . next . locked = f a l s e ;
i f (qnode . next . aborted){

// wait f o r s u c c e s s o r o f qnode . next
i f (. . .){ . . . } e l s e { . . . }

unlock (qnode . next) ;
}

}

c) There are four combinations of values the locked and aborted flag can have. We can easily
encode these combinations in an integer. We would not need too worry about the order
in which we read and write to the flags, as we could do this atomically. So the algorithm
would get easier. We could also ensure that unlock is called only once. Depending on the
benchmark this could increase the performance. On the other hand, a CAS operation is
quite expensive and could decrease performance.

d) - There could be problems with caches: spinning on a value that “belongs” to another
process can introduce additional load on the bus, and thus slow down the entire
application.

6

+ The implementation is much easier: when releasing the lock one has only to set its
own locked flag to false.

+ Also aborting is easier: a blocked process could read the state of its predecessor. If the
predecessor is aborted, then the successor can just remove the node from the queue,
and continue reading values from its predecessor’s predecessor.

7

