
Distributed
 Computing

HS 2014 Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 1

1 An Asynchronous Riddle

a) The crucial idea is to select one prisoner as a leader. The leader will turn the switch off,
whenever he enters the room and the switch is on. All other prisoner will turn the switch
on exactly once. So a prisoner who enters the room looks at the switch. If the switch is off
and the prisoner has never turned it on before, he will turn the switch on. If the switch is
already on or the prisoner already did turn the switch on during an earlier visit, he leaves
the switch as it was. The leader counts how many times he turns the switch off. If the leader
counted 99 times he can declare ”We all visited the switch room at least once”. Because he
knows, that each of the other 99 prisoners has turned the switch on and he himself has been
in the room as well.

b) If the initial position of the switch is unknown, the above protocol cannot be used, since the
leader may miscount by one. However, this can easily be fixed. If each prisoner turns the
switch on exactly twice, the leader can be sure that everyone visited the room after counting
up to 2 · 99 = 198 turns.

2 Communication Models

Some ideas are:

Delay There is no delay with shared memory, if one process writes the other processes can read
immediately. With messsage passing delay can happen (not necessarily in every model),
different messages may even have different delays.

Overriding With shared memory if a process writes to a register, another process may override
the value before anyone could read the register. In message passing this cannot happen. On
the other hand messages may be lost, or the inbox buffer of a process may overflow, leading
to similar results.

Consistency With message passing several message may be sent at the same time, and the order
of arriving message may be messed up. With shared memory the value of a register is always
the value that was written last.

3 Consensus with an n-Register

We require 6 registers. We call the first three registers R0, R1 and R2. To the other three registers
we give the names R{0,1}, R{0,2} and R{1,2}. The goal is to find the fastest process and take its
input value as decision. In words, the protocol works as follows:

In a single step process i writes its id into Ri and into R{i,j} for i 6= j.
It then checks for all i 6= j whether process i was faster than process j:

If R{i,j} = −1 then neither i nor j have yet done anything.
Otherwise, if Ri = −1 then process j must be faster than i.
Otherwise, if Rj = −1 then process i must be faster than j.
Otherwise R{i,j} holds the id of the process which was slower.

With all this information, a process can calculate which process must have been the fastest.

Solution in pseudo code:

i n i t i a l i z e (){

// R are the shared r e g i s t e r s
R [] = [−1 , −1, −1, −1, −1, −1];
// the input , an array o f l ength 3
input [] = [random () , random () , random ()] ;

}

dec ide (){

id = t h i s . getThreadId () ;
// the i d e n t i f i e r s o f the other p r o c e s s e s
o the r s = [{0 ,1 ,2} without { id }] ;

// a tomica l l y wr i t e three r e g i s t e r s
wr i t e (R[id] = id , R[id , o the r s [0]] = id , R[id , o the r s [1]] = id) ;

// pa i rw i s e comparison o f process−speed
f a s t e s t 0 1 = f a s t e r (0 , 1 , id) ;
f a s t e s t 0 2 = f a s t e r (0 , 2 , id) ;
f a s t e s t 1 2 = f a s t e r (1 , 2 , id) ;

// f i n d the proce s s which i s f a s t e r than a l l the o the r s
s co r e [] = [0 , 0 , 0] ;
s c o r e [f a s t e s t 0 1] = sco r e [f a s t e s t 0 1]+1;
s co r e [f a s t e s t 0 2] = sco r e [f a s t e s t 0 2]+1;
s co r e [f a s t e s t 1 2] = sco r e [f a s t e s t 1 2]+1;
winner = max(s co r e) ;

i f (count [0] == winner)
d e c i s i o n = input [0]

e l s e i f (count [1] == winner)
d e c i s i o n = input [1] ;

e l s e // count [2] == winner
d e c i s i o n = input [2] ;

}

f a s t e r (i , j , id){

2

somethingHappened = true ;
whi l e (somethingHappened){

// We need to assure , that we read a c o n s i s t e n t memory s t a t e
// This i s s t i l l wait−f r e e , t h i s loop i s t r ave r s ed at most 3 t imes
r i j = R[i , j] ; r i= R[i] ; r j = R[j] ;
r i j S e cond = R[i , j] ; r iSecond = R[i] ; r jSecond = R[j] ;
i f (r i j == r i j S e cond && r i == riSecond && r j == rjSecond) {

somethingHappened = f a l s e ;
}

}
i f (r i j == −1){ // n e i t h e r o f i or j yet s tar ted , I am f a s t e r than both

return id ;
}
e l s e {

i f (r i == −1){
// i did not yet s ta r t , hence j must be f a s t e r
re turn j ;
}
i f (r j == −1){

// j did not yet s ta r t , hence i must be f a s t e r
re turn i ;

}
i f (r i j == i){

// value wr i t t en by j was overr idden by i
re turn j ;

}
e l s e { // r j == j

return i ;
}

}
}

3

