
Distributed
 Computing

HS 2014 Prof. Dr. R. Wattenhofer / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems

5.11 Competitive Lists with Move-to-Front

Consider a list L containing n items, for example the collection of your favorite records.
Whenever an item x in L is requested the list is scanned from the front until x is found.
Therefore the cost of accessing x is k if x is the kth item in the list. In order to better
respond to subsequent requests, the position of any two adjacent items in L may be
swapped. Such a swap also causes cost 1. Requests to items in the list L arrive in an
on-line fashion.

The on-line algorithm Move-to-Front (M2F) adheres to the following simple rule:
Whenever item x is requested, M2F moves x to the front. The cost to access x when
x is the the kth item in L is thus k for the initial scan, and k − 1 swaps to move it to
the front, i.e., the total cost is 2k − 1. Note that M2F does not change the relative
order of items different from x. As usual, we would like to know how M2F compares
to an optimal off-line algorithm OPT that knows the entire sequence of requests in
advance. In the remainder of this section we establish the following theorem.

Theorem 5.19. The algorithm Move-to-Front is strictly 4-competitive.

Denote by OPT an optimal algorithm. We keep track of two lists LM2F and
LOPT , i.e., the list L as it is maintained by M2F and OPT, correspondingly. Initially
LM2F = LOPT = L. For the two lists LM2F and LOPT , an inversion is a pair of items
(x, y) which appear in different order in LM2F than in LOPT .

LM2F

LOPT

x y

y x

Figure 1: The inversion (x, y) between LM2F and LOPT .

Our competitive analysis of M2F is carried out using the potential method. The
potential function Φ is defined as follows.

Φ := 2 · (number of inversions between LM2F and LOPT)

1

The potential method. A potential function Φ is a tool used in amortized
analysis. The idea is to model the amortized cost amortized(op) of some operation
op by

amortized(op) := cost(op) + ∆Φ(op),

where cost(op) is the actual cost of op, and ∆Φ(op) is the change of potential
caused by op. For the competitive analysis of an on-line algorithm A, the total
actual cost is bounded by A’s the total amortized cost.

Initially the potential Φ = 0 since the lists are equal. In every step, Φ is non-
negative since the number of inversions is non-negative. Thus the total cost of M2F is
upper bounded by the total amortized cost of M2F. It therefore suffices to show that
M2F’s amortized cost is at most 4 times the cost of OPT. We will in fact establish
this bound after every request was handled, which implies that the bound also holds
for the entire request sequence.

Fix a sequence of requests and a request r in that sequence, and denote by x the
item requested by r. Denote by j and k the position of x in LOPT and LM2F before
handling r, respectively.

LM2F

LOPT

x

x

k

j

Figure 2: Item x in LM2F and LOPT before handling request r.

The cost amortized(r) for M2F consists of the actual cost(r) and the change in
the potential function ∆Φ(r). Recall that cost(r) = 2k − 1. The change of potential
is completely determined by the inversions that are created or destroyed by the list
maintenance performed by M2F and OPT, in other words ∆Φ(r) = ∆ΦM2F +∆ΦOPT .

Let us first look at the contribution ∆ΦM2F to ∆Φ caused by M2F’s list main-
tenance. Since M2F does not change the relative order of non-requested items, all
affected inversions must involve item x. Furthermore x is only swapped with items
y that precede x in LM2F . Let y be an item preceding x in LM2F before M2F’s list

≤ (j − 1) bad items y

LM2F

LOPT

x

x

k

j

y

Figure 3: Items x, y in LM2F and LOPT before handling request r.

2

maintenance. We say that item y is bad if y precedes x also in LOPT , otherwise y is
good. If y is bad, then a new inversion is created, otherwise an inversion is destroyed.
There are at most j− 1 bad items, and therefore at least (k− 1)− (j− 1) good items.
Recalling that Φ counts each inversion twice, we conclude that

∆ΦM2F ≤ 2 ·
(
j − 1−

(
(k − 1)− (j − 1)

))
= 4j − 2k − 2.

We still need to account for the list maintenance of OPT. Denote by s the number
of swap-operations performed by OPT while handling request r. Every such swap
increases costOPT (r) of the optimal algorithm by exactly 1. Recall that the cost for
finding item x in LOPT is j, and therefore

costOPT (t) = j + s

Furthermore, every swap performed by OPT creates at most one new inversion. The
contribution ∆ΦOPT to ∆Φ is thus at most 2s, and we can bound amortized(r) as

amortized(r) = cost(r) + ∆ΦM2F + ∆ΦOPT

≤ 2k − 1 + 4j − 2k − 2 + 2s

= 4j − 3 + 2s

< 4j + 2s

≤ 4 · (j + s) = 4 · costOPT (r).

3

