
Distributed
 Computing

HS 2013 Prof. R. Wattenhofer / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems
Solution to Exercise Sheet 5

1 Turing again

a) (i) First we write a ‘=’ (as a seperator) to the right of the last 1 of b (state 1). Then we
remove the leftmost 1 of a (states 2–4) and write for every 1 of b a 1 to the right of
‘=’ (states 5–10) by replacing every already used 1 with ‘E’. When there are only ‘E’s
to the left of ‘=’ (until ‘×’), we replace them with ‘1’s (states 11–12) and start again.
This is repeated until there are no ‘1’s to the left of ‘×’. When this is the case, we
have calculated the correct number to the right of ‘=’ and we only need to remove all
superfluous symbols (states 13–14).

(ii) A TM operated by the following DFA computes the desired output:

1 2 3 4 5 6

7

89

10

11121314

{1,×}|R {1,×}|L 1 |R 1 |R

1 |R

1 |L

1 |L

E→1 |L{1,×}→� |R

�→= |L � |R 1→� |R ×|R 1→E |R

= |R

�→1 |L

= |L

1 |L

E→1 |L

1 |L

E |R

×|L� |R=→� |R

b) Obviously, every program that can run on a TM of type M2 can also be run on a TM of
type M1, just ignore that additional tape exists. The other directions is a bit harder: The
(limited) TM M1 implements a mapping of a cell index x in M2 to a cell index f(x) in M1

as follows:

f(x) =

{
2x x ≥ 0

2|x| − 1 x < 0 .

To implement this, the TM M1 works in two modi A and B, defined as follows:

Modus A:

M2 → R ⇒ M1 → 2R

M2 → L ⇒ M1 → 2L

Modus B:

M2 → R ⇒ M1 → 2L

M2 → L ⇒ M1 → 2R

M1 starts in modus A. If M1 reaches the left end of the tape and cannot execute going to
the left twice (2L), then M1 goes one step to the right and switches to the other modus
(in some sense, this is a similar construction as mapping the set of integers to the set of
natural numbers).

2 An Unsolvable Problem

a) It is surprisingly easy to prove that your boss is demanding too much. Assume a func-
tion halt(P: Program): boolean which takes a program P as a parameter and returns a
boolean value denoting whether P terminates or not.

Now consider the following program X which calls the halt() function with itself as an
argument just to do the contrary:

function X() {

if (halt(X))

while(true);

else

return;

}

Obviously, if halt(X) is true X will loop forever, and vice versa.

b) If the simulation stops we can definitively decide that the program does not contain an
endless loop. However, while the simulation is still running, we do not know whether it will
finish in the next two seconds or run forever. Put differently: There is no upper bound on
the execution time of the simulation after which we can be sure that the program contains
an endless loop.

c) As we have seen, it is not possible to predict whether a general program terminates or not.
However, under certain constraints we can solve the halting problem all the same. For
example, consider a restricted language with only one form of a loop (no recursion etc.):

for (init; end; inc) {...}

where init, end and inc are constants in Z. The loop starts with the value init and adds
inc to init in every round until this sum exceeds end if end > 0 or until it falls below
end if end < 0. Obviously, there is a simple way to decide whether a program written in
this language terminates: For every loop, we check whether sgn(inc) = sgn(end), where
sgn(·) is the algebraic sign. If not, the program contains an endless loop (unless init itself
already fulfills the termination criterion which is also easy to verify).

3 Dolce Vita in Rome

We define the following random variables.

X = number of ice creams bought in total

Xi = indicator variable for buying ice cream at shop i

2

That means Xi is 1 if Hector and Rachel buy ice cream at shop i and 0 otherwise. Since
the probability that the i-th shop is the best so far equals 1

i and the expectation of an indicator
variable is simply the probability of it being 1, we have

E[Xi] =
1

i
.

Furthermore, we can express X as
∑n

i=1 Xi and by using linearity of expectation, we obtain:

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

1

i
= Hn .

Here Hn is the n-th Harmonic Number. Hn grows about as fast as the natural logarithm of n.
The reason for this is that the sum of the first n harmonic numbers can be approximated by∫ n

1

1

x
dx = ln(n) .

More precisely, we have Hn = ln(n) + O(1) and thus the two students roughly consume a
logarithmic number of ice creams (in the total number of shops n).

3

