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Solution to Exercise Sheet 13

1 Competitive Analysis

Competitiveness

In the script there is a definition for the competitiveness of an algorithm. However, this
definition only holds if we want to evaluate an algorithm by means of its costs. Sometimes,
we want to compare algorithms regarding their benefit rather than their costs. In this case,
we have to be a bit careful with the definition of a c-competitive algorithm. We say that
an algorithm ALG is c-competitive, if for all finite input sequences the solution of algorithm
ALG is at most a factor ¢ worse than the optimal algorithm, regardless of the algorithms
being compared concerning costs or benefit.

According to whether we evaluate an algorithm based on costs or benefit, an algorithm ALG
is c-competitive if for all finite input sequences I

costarc(I) < c¢-costopr(I) +k or

benefitarq(I) > — - benefitopr(I) — & respectively.
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Competitive Analysis

The competitive analysis of an algorithm ALG consists of two separate steps. First, we show
that for an arbitrary problem instance, the result of ALG is asymptotically at most a factor
¢ worse than the the optimal offline result. This yields an upper bound on ALG’s result,
that is costa;q < ¢ - costopr + k. If the task is to show that ALG is c-competitive for a
constant ¢, then we are done. If we are interested in a tight analysis, we have to show that
there is a problem instance where the result of ALG is a factor ¢ worse than the optimal
offline result. This gives a matching lower bound on the objective value of the algorithm,
costaLg = ¢ costopr.

Naturally, the second step is easier than the first one because we just have to find a “bad
instance”. The first step is often much more involved. A pattern that works quite often is
the following.

1. Consider an arbitrary input sequence for ALG.
2. Partition the input sequence into suitable parts.
3. Show that cp ¢ < ¢- copr for each part.

The tricky part here is to find a suitable partition in step 2.
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a)

b)

Recall that calls have infinite duration. Therefore, once a cell accepts a call, no neighboring
cell can accept a call thereafter. The natural greedy algorithm GREEDY accepts a call,
whenever this is possible. That is, a call in cell C' is accepted if no neighboring cell of C'
has previously accepted a call.

Figure 1: The solutions GREEDY (left) and OPT (right)

For every call accepted by GREEDY, there are two cases:

e OPT accepted the call as well

e OPT rejected the call which may enable it to accept at most three additional calls (see
Figure 1)

Thus, OPT can accept at most three times as many calls as GREEDY. Assume that there
are four calls, the first one in A, then three non-interfering ones in neighboring cells B, C,
and D. GREEDY accepts the first and has benefit 1. OPT rejects the first call, but accepts
the remaining three, resulting in a benefit of 3. The algorithm is 3-competitive.

There is no competitive algorithm if calls can have arbitrary durations. We show this,
again, by designing a “cruel” input sequence. Assume that the first call arrives in A and
has arbitrary duration. There are two possible actions for an algorithm ALG.

If ALG rejects this call, no further calls will arrive and therefore benefit(ALG) = 0. The
optimal algorithm would have accepted the call, i.e., benefit(OpT) = 1. The competitive
ratio is infinitely large.

On the other hand, if ALG accepts the call, there will be infinitely many calls coming in
cell B, each of which has very short duration e. While ALG cannot accept any of these calls
(because the call in A has infinite duration), the optimal algorithm rejects the first call and
accepts all subsequent calls. This yields benefit(ALG) = 1 as opposed to benefit(OPT) = 3,
for an arbitrarily large value of 3.

Note: At first sight, it seems that there is no better algorithm than the natural greedy
algorithm from part a) of the exercise. After all, the algorithm must accept the first
call in order to stay competitive. Accepting the first call, on the other hand, leads to a
competitive ratio of 3. However, it can be shown that there exists a randomized algorithm
with competitive ratio 2.97. This algorithm accepts every call with a certain probability.

Competitive Christmas

If our algorithm tells Roger to buy a tree of size c, then it is followed in the worst-case by a tree
of size b which yields a competitive ratio of pa = b/c. To make p4 as small as possible, Roger
should only buy a tree if its size ¢ is as large as possible. If he ignores a tree of size ¢ — ¢ in the
hope that he finds a larger tree, he might in the worst-case only encounter trees of size a yielding
a competitive ratio of pp = (¢ — £)/a. In these two cases p should be as small as possible such



that Roger gets a tree that is as large as possible. Hence, we have to set the value ¢ above which
Roger buys a tree such that p4 and pp are minimised. This is the case for p4 = pp which yields
¢ = Vab. The corresponding competitive ratio is \/b/a.
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The Best Secretary

To avoid a potentially bad ordering of the candidates, Roger invites them into his room
in a random order. Within the first half (n/2 candidates), Roger only rates the applicants
and memorises the best quality G. In the second half, Roger accepts a candidate if its
quality exceeds G.

The probability that the second-best candidate is in the first half is 1/2. The probability
that the best candidate is in the second half is also 1/2. If both these events happen, Roger
actually hires the best candidate. This case occurs with probability 1/2-1/2 = 1/4.

The analysis for the above algorithm clearly is only a rough estimate. We only considered
the special case where the second-best secretary is in the first half and the best one in
the second half. Roger also would have chosen the best one if the third-best is in the
first half and the best and the second-best candidate in the second half but in this order.
Furthermore, we assumed without justification that the algorithm rates the first half of
the candidates and then selects one from the second half.

For an exact analysis, assume that Roger first rates = - n candidates (for « € [0,1]) and
then chooses the candidate that is better than the best one from these x -n applicants. Let
1 and 2 denote the set of the candidates in the first and second part, respectively.

We denote by C; the i-th best candidate and define the probability p; for the event that
C; € 1 and all better ones are in 2 with the best candidate first. The case (special case
from above) that the Co € 1 and C; € 2 occurs with probability

pQZPr[CQE]_]'PI'[Cl €2|02€1]
(I-2)n
n—1

Note that the conditional probability for C; being in 2 given that C5 is in 1 is bigger than
(1 — z) since one “slot” in 1 is already taken by Cs.

Similiarly, we can calculate the probability p3 but we now also have to consider the prob-
ability that C; appears before Cs in 2.

P3 :PI‘[C;J, € 1] -PI"[CQ €2 | 03 S 1]-PI‘[C1 €2 | 03 €1 and Cy 62] -PI‘[Cl before Cg]
o (l-2)n QI-2)n-11
I n—2 2

Note again that we have to use conditional probabilities here.

Analogous to p3, we can derive a formula for p;.
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Since we are interested in the probabilities for large n, we can consider the limit instead.
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Note that this result corresponds to ignoring the dependence between the candidates in
both parts by calculating without conditional probabilities.

Now we can calculate the success probability pguec for hiring the best candidate.

Differentiating yields that pgsuec(x) attains its maximum for x = 1/e and we have further
Dsuce(1/€) = 1/e. Hence, Roger should only rate a fraction of 1/e ~ 37 % of the candidates
and then start with the selection as described above. Then, the probability to get the best
secretary is 1/e.



