255
ETH o

. . T Yy
Eidgendssische Technische Hochschule Ziirich Distributed I;‘:;:““ ‘.
Swiss Federal Institute of Technology Zurich Computmg ‘?‘\ Pl
HS 2012 S. Welten / Prof. R. Wattenhofer

Distributed Systems Part 11

Solution to Exercise Sheet 6

1 Paxos Timeline

The timeline consists of two concurrent processes, one on the client (Q and one on the client R.
In Figure 1 you can see how both clients prepare and propose their values at first, but only the
value of client @) gets accepted:

e Ty + 0.0: @ sends a prepare(22,1). As A and B have never accepted a value they reply
with acc(g,0).

e Ty + 0.5: R sends a prepare(33,2). As B and C have never accepted a value they reply
with acc(g,0).

e Ty + 1.0: @ sends a propose(22,1). This is acknowledged by A with ack(22,1) because its
Nmaz = 0. B does not reply as its value n,q = 2.

e Tp+2.0: Q sends a prepare(22,3). As B has never accepted a value it replies with acc(g,0).
A returns the latest accepted value: acc(22,1).

e Ty +2.5: R sends a propose(33,2). This is acknowledged by C with ack(33,2). B does not
reply as its value n,q, is 3.

e Ty +3.0: @ sends a propose(22,3). This is acknowledged by A and B with ack(22,3).

e Ty +4.5: R sends a prepare(33,4). C sends back its latest accepted value ack(33,2). B also
sends back its latest accepted value acc(22,3)

e Ty +6.5: R sends a propose(22,4) (It took the newest value from the prepare phase). Both
clients B and C reply with an ack(22,4). All clients have accepted the same value. This
means we have achieved consensus.

prep(22, 1)

TO +0 >
/R<prep(33, 2 To + 0.5
acc(g, 0
prop(22, 1)
Tot1 >N
ack(22, 1)
TO +2 prep(22, 3)

P
/cc(¢, 0)
prop(33,2) . Ty + 2.5

ack(33,
22,3)

To+ 3 prop
o

prep(33,4) __ T, + 4.5

acc(22, 3)ecc(33,

prop(22,4 Ty + 6.5

ack(22, 4)(k(22

Q A B C R

Figure 1: The timeline of the two clients running the given paxos-proposer-program with different
timeout values

2 Paxos Acceptors

a) Figure 2 shows an example of how a byzantine client can lead to a failure of the Paxos
protocol (i.e. why Paxos is not resilient against byzatine failures):

ot

1. The red proposer sends a prepare with value 1.

2. The red acceptors (incl. the byzantine) send an ack(g,0) back.

3.

4. The blue acceptors (incl. the byzantine) send an ack(g,0) back. We assume that a

The blue proposer sends a prepare with its value.

read on the faulty register of the byzantine node returned 7,4, = 0.

The red proposer sends a propose with value 1.

6. The red acceptors (incl. the byzantine) send an ack(1,3) back. We assume that a read

on the faulty register of the byzantine node returned n,,,, = 3.

The blue proposer sends a propose with value 1.

8. The blue acceptors (incl. the byzantine) send an ack(2,4) back. We assume that a
read on the faulty register of the byzantine node returned 7,4, = 4.
At the end of these 8 steps the red proposer thinks that a majority has accepted the value

1 and the blue proposer thinks that a majority has accepted value 2. Both proposers will
start to disseminate their value as each of them thinks that they have achieved consensus.

— v - L -
[. \ 4 EJ N =
/ propose(1,3) / \ \

4/\\\%“ S & w\lg g

\ ED™ LA™ R (- \
\ = j= = N/ g :jv/ \51 o] = \ jou] /
N\ AN /7 A 7/
~ // \,\‘\‘// '\\ /_/' \\ //
I 6. - -
s \.y_/ h\\ o \\/'/. ¥\\
// 0 A jo \ //] A N
/ \ \ \ ; A \ \
. =) | | D=1 l
\ L_‘ Cl 5, \\ ! JEJ CJ &‘]// \ CJ C H\ ! EJ :_‘ ;J /
\ \E “acc(e,0) /\/ - , \ o “ack(1,3) \/\/ - y !
~ //' S »/./ N 7 N ‘/_/’
3. _/': T ~ _/'/ - ‘.\;\.\ 7. P -~ \'\v ,/././ - .
- ¥, g g v, =
// prepare(24) \ /_/ / E propose(2, 4) \
‘» “IRY IR N
(R \ / C / \ - A
N=R=R= V=N H\,, g9,
\ A s AN A, 7
~. s _\N’// ~. ‘/V/' ST
4. P -T~ N /,/" - N 8. ./‘: - T~ P N
g

J v, c

S /AN a{//
T L_]// [! LJ /

\\;JQ;J\\/ :LJ

N A acc(e,0) '/ '/_ ack(24)
7

_ ~. _ /'

~ N .
: ~

Figure 2: How a byzantine client can lead to different values that are accepted by a majority.

b) The prepare step allows the proposer and the acceptor to agree on a lower bound of the
proposal number that will be accepted. By sending an ack(x,y) message, the acceptor
guarantees the proposer that it will never accept a proposed value that has a smaller

timestamp than the one in the prepare message of the proposer.

