
Distributed
 Computing

HS 2012 S. Welten / Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 6

1 Paxos Timeline

The timeline consists of two concurrent processes, one on the client Q and one on the client R.
In Figure 1 you can see how both clients prepare and propose their values at first, but only the
value of client Q gets accepted:

• T0 + 0.0: Q sends a prepare(22,1). As A and B have never accepted a value they reply
with acc(ø,0).

• T0 + 0.5: R sends a prepare(33,2). As B and C have never accepted a value they reply
with acc(ø,0).

• T0 + 1.0: Q sends a propose(22,1). This is acknowledged by A with ack(22,1) because its
nmax = 0. B does not reply as its value nmax = 2.

• T0 +2.0: Q sends a prepare(22,3). As B has never accepted a value it replies with acc(ø,0).
A returns the latest accepted value: acc(22,1).

• T0 + 2.5: R sends a propose(33,2). This is acknowledged by C with ack(33,2). B does not
reply as its value nmax is 3.

• T0 + 3.0: Q sends a propose(22,3). This is acknowledged by A and B with ack(22,3).

• T0 + 4.5: R sends a prepare(33,4). C sends back its latest accepted value ack(33,2). B also
sends back its latest accepted value acc(22,3)

• T0 + 6.5: R sends a propose(22,4) (It took the newest value from the prepare phase). Both
clients B and C reply with an ack(22,4). All clients have accepted the same value. This
means we have achieved consensus.

Q A B C R

acc(ø, 0)

prep(22, 1)

acc(ø, 0)
prop(22, 1)

ack(22, 1)

prep(22, 3)

acc(22, 1)
0 + 2

prop(33, 2)

ack(33, 2)

prep(33, 2)

acc(ø, 0)

prop(22, 3)

ack(22, 3)

0 + 1

0 + 3

0 + 0

0 + 0.5

0 + 2.5

prep(33, 4)

acc(33, 2)

0 + 4.5

acc(22, 3)

prop(22, 4)

ack(22, 4)

0 + 6.5

ack(22, 4)

Figure 1: The timeline of the two clients running the given paxos-proposer-program with different
timeout values

2 Paxos Acceptors

a) Figure 2 shows an example of how a byzantine client can lead to a failure of the Paxos
protocol (i.e. why Paxos is not resilient against byzatine failures):

1. The red proposer sends a prepare with value 1.

2. The red acceptors (incl. the byzantine) send an ack(ø,0) back.

3. The blue proposer sends a prepare with its value.

4. The blue acceptors (incl. the byzantine) send an ack(ø,0) back. We assume that a
read on the faulty register of the byzantine node returned nmax = 0.

5. The red proposer sends a propose with value 1.

6. The red acceptors (incl. the byzantine) send an ack(1,3) back. We assume that a read
on the faulty register of the byzantine node returned nmax = 3.

7. The blue proposer sends a propose with value 1.

2

8. The blue acceptors (incl. the byzantine) send an ack(2,4) back. We assume that a
read on the faulty register of the byzantine node returned nmax = 4.

At the end of these 8 steps the red proposer thinks that a majority has accepted the value
1 and the blue proposer thinks that a majority has accepted value 2. Both proposers will
start to disseminate their value as each of them thinks that they have achieved consensus.

Figure 2: How a byzantine client can lead to different values that are accepted by a majority.

b) The prepare step allows the proposer and the acceptor to agree on a lower bound of the
proposal number that will be accepted. By sending an ack(x,y) message, the acceptor
guarantees the proposer that it will never accept a proposed value that has a smaller
timestamp than the one in the prepare message of the proposer.

3

