Chapter 5

Worst-Case Event Systems

Christoph Stamm / Roger Wattenhofer

Overview: Worst-Case Analysis of DES

- Ski Rental
 - Randomized Ski Rental
 - Lower Bounds

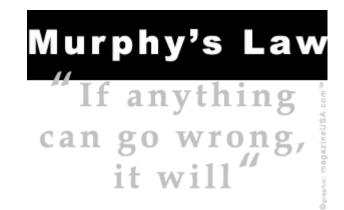
- The TCP Acknowledgement Problem
- The TCP Congestion Control Problem
 - Bandwidth in a Fixed Interval
 - Multiplicatively Changing Bandwidth
 - Changes with Bursts
- Many application domains are not Poisson distributed!
 - sometimes it makes sense to assume that events are distributed in the worst possible way (e.g. in networks, packets often arrive in bursts)

Theory of Renting Skis

Scenario

- you start a new hobby, e.g. skiing
- you don't know whether you will like it
- expensive equipment : ≈1 kFr

3 Alternatives


- just buy a new equipment (optimistic)
- always renting (pessimistic)
- first rent it a few times before you buy (down-to-earth)
- You choose the pragmatic way, but Murphy's law will strike!
 - first you rent, but as soon as you buy, you will lose interest in skiing

Ski Rental Problem

Expenses

- buying: 1 kFr
- renting: 1 kFr per month

Scenario

- first rent it for z months, then buy it
- after u months you will lose your interest in skiing

2 cases:

$$u \le z \rightarrow \text{cost}_z(u) = u \text{ kFr}$$

 $u > z \rightarrow \text{cost}_z(u) = (z + 1) \text{ kFr}$

If you are a clairvoyant, then ...

```
u \le 1 \text{ month } \Rightarrow \text{ just renting is better } \Rightarrow \text{cost}_{\text{opt}}(u) = u \text{ kFr}

u > 1 \text{ month } \Rightarrow \text{ just buying is better } \Rightarrow \text{cost}_{\text{opt}}(u) = 1 \text{ kFr}

\Rightarrow \text{cost}_{\text{opt}}(u) = \min(u, 1)
```


Competitive Analysis

Definition

An online algorithm A is c-competitive if for all finite input sequences I

$$cost_A(I) \le c cost_{opt}(I) + k$$

where *k* is a constant independent of the input.

If k = 0, then the online algorithm is called strictly c-competitive.

• When strictly *c*-competitive, it holds

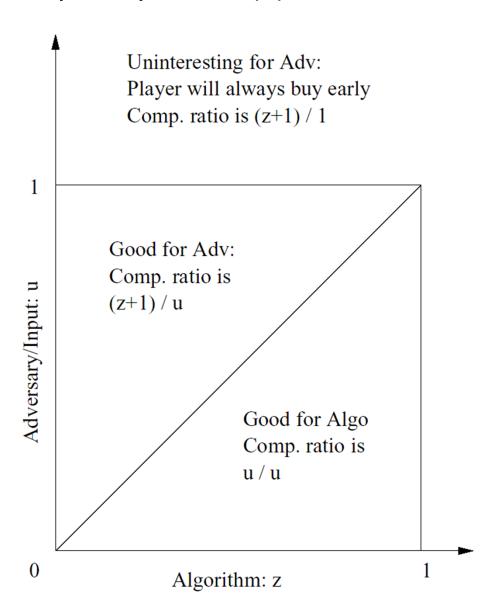
$$\frac{\cot A(u)}{\cot (u)} \le c$$

- Example
 - Ski rental is strictly 2-competive. The best algorithm is z = 1.

Randomized Ski Rental

- Deterministic Algorithm
 - has a big handicap, because the adversary knows z and can always present a u
 which is worst-case for the algorithm
 - only hope: algorithm makes random decisions
- Randomized Algorithm
 - chooses randomly between 2 values z_1 und z_2 (with $z_1 < z_2$) with probabilities p_1 and $p_2 = (1 p_1)$

$$cost_A(u) = \begin{cases} u & \text{if } u \le z_1 \\ p_1 \cdot (z_1 + 1) + p_2 \cdot u & \text{if } z_1 < u \le z_2 \\ p_1 \cdot (z_1 + 1) + p_2 \cdot (z_2 + 1) & \text{if } z_2 < u \end{cases}$$

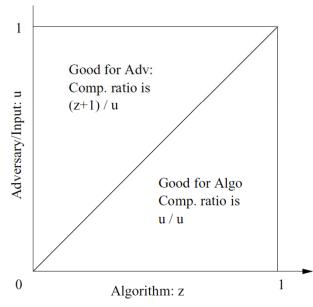

- adversary chooses randomly
 - $-u_1 = z_1 + \varepsilon$ with probability q_1
 - $-u_2 = z_2 + \varepsilon$ with probability $q_2 = 1 q_1$
- Example
 - $z_1 = \frac{1}{2}$, $z_2 = 1$, $p_1 = \frac{2}{5}$, $p_2 = \frac{3}{5}$
 - E[c] = $\frac{\text{cost}_A}{\text{cost}_{opt}}$ = 1.8

What about choosing randomly between more than 2 values???

Randomized Ski Rental with infinitely many Values (1)

- Let r(u, z) be the competitive ratio for all pairs of u and z
- We are looking for the expected competitive ratio E[c]
- Adversary chooses u with uniform distribution

$$E[c] = \frac{\iint r(u, z)dzdu}{\iint dzdu}$$
$$= \frac{1}{2} + \int_{u=0}^{1} \int_{z=0}^{u} \frac{z+1}{u}dzdu$$
$$= 1.75$$


Randomized Ski Rental with infinitely many Values (2)

- Algorithm chooses z with probability distribution p(z)
 - it chooses p(z) such that it minimizes E[c]
- Adversary chooses u with probability distribution d(u)
 - it chooses d(u) such that it maximized E[c]

$$E[c] = \frac{\int_0^1 \int_0^u (z+1)p(z)d(u)dzdu + \int_0^1 \int_u^1 up(z)d(u)dzdu}{\int_0^1 \int_0^1 up(z)d(u)dzdu}$$

$$\int p(z) = \int d(u) = 1$$

- How to find these probability distributions?
 - This is a very hard task!
 - \rightarrow We should make the problem independent of the adversarial distribution d(u).

Randomized Ski Rental with infinitely many Values (3)

Idea

Choose the algorithm's probability function p(z) such that $cost_A(u) \le c cost_{opt}(u)$ for all u

- \rightarrow adversarial distribution d(u) doesn't matter anymore
- $cost_{opt}(u) = u$ for all u between 0 und 1

$$\int_0^u (z+1)p(z)dz + \int_u^1 u \cdot p(z)dz \le c \cdot u$$
with
$$\int_0^1 p(z)dz = 1$$

• Having a hunch: the best probability function p(z) will be an equality \Rightarrow With $p(z)=\frac{e^z}{e-1}$ we have an algorithm that is $\frac{e}{e-1}$ -competitive in expectation.

Can we get any better??? → Lower Bounds

Von Neumann / Yao Principle

Choose a distribution over problem instances (for ski rental, e.g. d(u)). If for this distribution all deterministic algorithms cost at least c, then c is a lower bound for the best possible randomized algorithm.

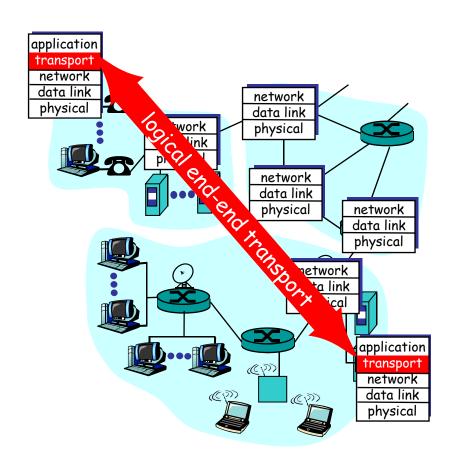
Ski Rental

- we are in a lucky situation, because we can parameterize all possible deterministic algorithms by $z \ge 0$
- choose a distribution of inputs with $d(u) \ge 0$ and $\int d(u) = 1$
- Examples: $d(u) = \frac{1}{2}$ for $0 \le u \le 1$ and $d(\infty) = \frac{1}{2}$

$$\rightarrow$$
 cost_{z=0}($d(u)$) = 1

$$cost_{z<1}(d(u)) = 1 + z/2 - z^2/4 \ge 1$$

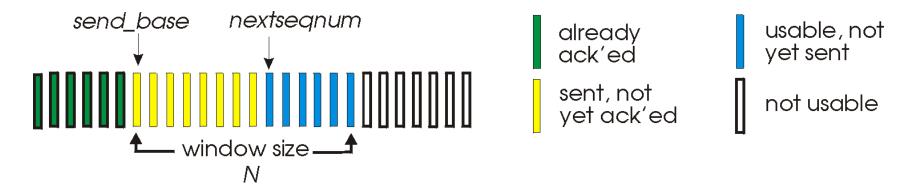
$$\rightarrow$$
 cost₇₌₁ $(d(u)) = 5/4$


$$cost_{z>1}(d(u)) = \frac{1}{4} + (z+1)/2 > \frac{5}{4}$$

$$\rightarrow$$
 cost_{opt}($d(u)$) = $\frac{3}{4}$

$$\rightarrow$$
 c/cost_{opt} = 1/ $\frac{3}{4}$ = 4/3 = 1.33

TCP: Transmission Control Protocol


- Layer 4 Networking Protocol
 - transmission error handling
 - correct ordering of packets
 - exponential ("friendly") slow start mechanism: should prevent network overloading by new connections
 - flow control: prevents buffer overloading
 - congestion control: should prevent network overloading

Packet Acknowledgment

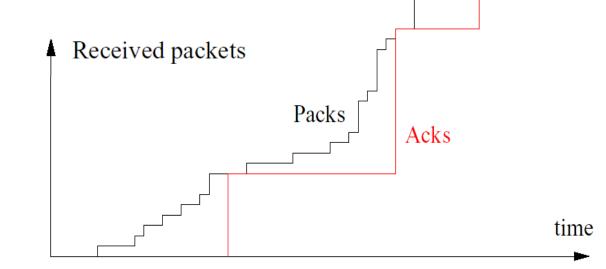
Sender

- Sequence number in packet header
- "Window" of up to N consecutive unack'ed packets allowed

- ACK(n): ACKs all packets up to and including sequence number n
 - a.k.a. cumulative ACK
 - sender may get duplicate ACKs
- timer for each in-flight packet
- timeout(n): retransmit packet n and all higher seq# packets in window

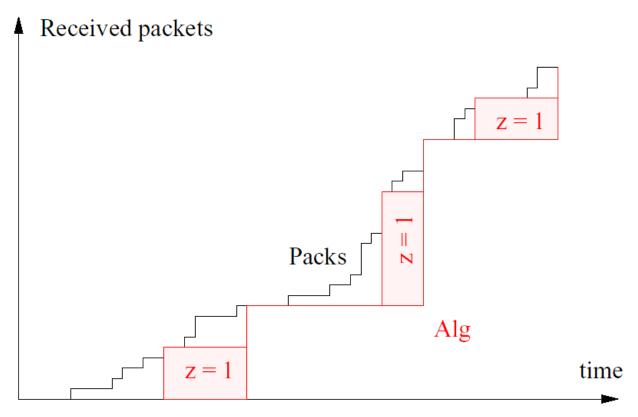
The TCP Acknowledgment Problem

Definition


The receiver's goal is a scheme which minimizes the number of acknowledgments plus the sum of the latencies for each packet, where the latency of a packet is the time difference from arrival to acknowledgment.

Given

n packet arrivals, at times: $a_1, a_2, ..., a_n$ k acknowledgments, at times $t_1, t_2, ..., t_k$ latency(i) = $t_j - a_i$, where j such that $t_{j-1} < a_i \le t_j$


Minimize

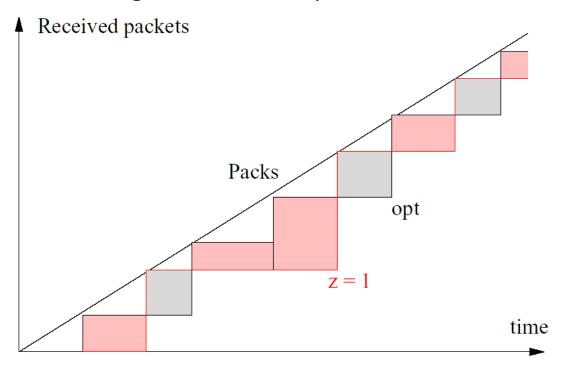
$$\left(k + \sum_{i=1}^{n} \operatorname{latency}(i)\right)$$

The TCP Acknowledgment Problem: z=1 Algorithm (1)

• z = 1 Algorithm is: Whenever a rectangle with area z = 1 does fit between the two curves, the receiver sends an acknowledgement, acknowledging all previous packets.

The TCP Acknowledgment Problem: z=1 Algorithm (2)

Lemma


- The optimal algorithm sends an ACK between any pair of consecutive ACKs by algorithm with z = 1.

Proof

- For the sake of contradiction, assume that, among all algorithms who achieve the minimum possible cost, there is no algorithm which sends an ACK between two ACKs of the z = 1 algorithm.
- We propose to send an additional ACK at the beginning (left side) of each z = 1 rectangle.
 Since this ACK saves latency 1, it compensates the cost of the extra ACK.
- That is, there is an optimal algorithm who chooses this extra ACK.

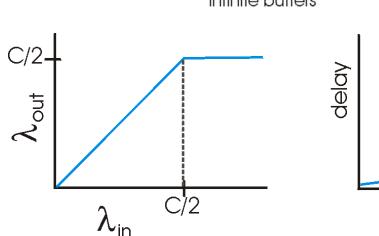
The TCP Acknowledgment Problem: z=1 Algorithm (3)

• Theorem: The z = 1 algorithm is 2-competitive.

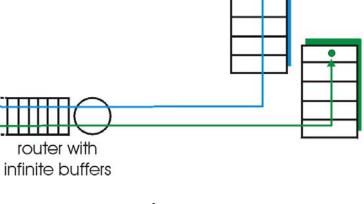
- Similarity to Ski Rental
 - it's possible to choose any z
 - if you wait for a rectangle of size z with probability $p(z) = e^{z}/(e-1)$ - randomized TCP ACK solution, which is e/(e-1) competitive

Simple TCP Congestion Scenario

congestion


too many sources sending too much data too fast for the network to handle

 $\lambda_{ ext{in}}$: original data


- two equal senders, two receivers
- one router with infinite buffer space and with service rate C

Host B

- large delays when congested
- maximum achievable throughput

Host A

The TCP Congestion Control Problem

Main Question

How many packets per second can a sender inject into the network without overloading it?

Assumptions

- sender does not know the bandwidth between itself and the receiver
- the bandwidth might change over time

Model

- time divided into periods { t }
- unknown bandwidth
 threshold u_t
- sender transmitsx₊ packets

Severe Cost and Gain Function

- $gain_t = u_t cost_t$
- $-x_t \le u_t : cost_t = u_t x_t \rightarrow gain_t = x_t$
- $x_t > u_t : cost_t = u_t$ \rightarrow gain_t = 0

The TCP Congestion Control Problem: The Dynamic Model

Competitive Analysis Definition

An online algorithm A is strictly c-competitive if for all finite input sequences I $\cos t_A(I) \leq c \cdot \cos t_{\rm opt}(I)$ or $c \cdot gain_A(I) \geq gain_{\rm opt}(I).$

- The Dynamic Model
 - algorithm: chooses a sequence { x_t }
 - adversary: knows the algorithm's sequence and chooses a sequence { u_t }
- Problem
 - − Adversary is too strong: $\forall t: u_t < x_t \rightarrow gain_A = 0$
- Reasonable restrictions
 - Bandwidth in a fixed interval: u_t ∈ [a, b]
 - Multiplicatively or additively changing bandwidth from step to step
 - Changes with bursts

Bandwidth in a Fixed Interval: Deterministic Algorithm

Preconditions

- adversary chooses u_t ∈ [a, b]
- algorithm is aware of the lower bound a and the upper bound b

• Deterministic Algorithm

- If the algorithm plays x_t > a in round t, then the adversary plays u_t = a
 → gain = 0
- Therefore the algorithm must play $x_t = a$ in each round in order to have at least gain = a.
- The adversary knows this, and will therefore play $u_t = b$.
- Therefore, $gain_{Alg} = a$, $gain_{opt} = b$, competitive ratio c = b/a.

Bandwidth in a Fixed Interval: Randomized Algorithm

- Let's try the ski rental trick!
 - For all possible inputs $u \in [a, b]$ we want the same competitive ratio:

$$c gain_{Alg}(u) = gain_{opt}(u) = u$$

- Randomized Algorithm
 - We choose x = a with probability p_a , and any value in x \in (a, b] with probability density function p(x), with $p_a + \int_a^b p(x) dx = 1$.
- Theorems
 - There is an algorithm that is c-competitive, with $c = 1 + \ln(b/a)$.
 - There is no randomized algorithm which is better than c-competitive, with c = 1 + ln(b/a).
- Remark
 - Upper and lower bound are tight.

Multiplicatively Changing Bandwidth

Preconditions

- adversary chooses u_{t+1} such that $u_t/\mu \le u_{t+1} \le \mu u_t$, with $\mu \ge 1$, e.g. 1.05
- algorithm knows u_1 and μ

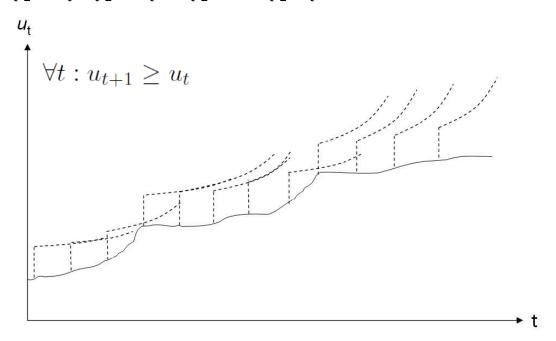
Algorithm A₁

- after a successful transmission in period t, the algorithm chooses $x_{t+1} = \mu x_t$
- otherwise: $x_{t+1} = x_t/\mu^3$

Theorem

- The algorithm A_1 is $(\mu^4 + \mu)$ -competitive

Algorithm A₂


- after a successful transmission in period t, the algorithm chooses $x_{t+1} = \mu x_t$
- otherwise: $x_{t+1} = x_t/2$

Theorem

– The algorithm A_2 is (4μ) -competitive

Changes with Bursts

- Bursty Adversary
 - − 2 parameters: $\mu \ge 1$ and maximum burst factor $B \ge 1$
 - adversary chooses $\mathbf{u}_{\mathsf{t+1}}$ from the interval $[\frac{u_t}{\beta_t \mu}, u_t \cdot \beta_t \cdot \mu]$ where $\beta_t = \min\{B, \beta_{t-1} \frac{\mu}{c_t \mathbf{is}_1} \mathbf{t} \}$ e burst factor at time t and where $\mathbf{c}_{\mathsf{t-1}} = \mathbf{u}_\mathsf{t}/\mathbf{u}_\mathsf{t-1}$ if $\mathbf{u}_\mathsf{t} > \mathbf{u}_\mathsf{t-1}$ and $\mathbf{u}_\mathsf{t-1}/\mathbf{u}_\mathsf{t}$ otherwise

