Overview: Worst-Case Analysis of DES

Chapter 5
Worst-Case Event Systems RIS

— Randomized Ski Rental
— Lower Bounds

e
‘ . ‘ g e The TCP Acknowledgement Problem
\ & ' . e The TCP Congestion Control Problem
. — Bandwidth in a Fixed Interval
— Multiplicatively Changing Bandwidth
— Changes with Bursts

e Many application domains are not Poisson distributed!

— sometimes it makes sense to assume that events are distributed in the worst
possible way (e.g. in networks, packets often arrive in bursts)
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Theory of Renting Skis Ski Rental Problem

— buying: 1 kFr

— renting: 1 kFr per month

e Scenario
— you start a new hobby, e.g. skiing
— vyou don‘t know whether you will like it

— expensive equipment : =1 kFr )
e Scenario
. — first rent it for z months, then buy it

¢ 3 Alternatives 4
. . . — after u months you will lose your interest in skiing
— just buy a new equipment (optimistic)
2 cases:
u <z -> cost,(u) = u kFr

u>z > cost,(u) = (z+ 1) kFr

— always renting (pessimistic)
— first rent it a few times before you buy (down-to-earth)

¢ You choose the pragmatic way, but Murphy’s law will strike!

. , . N e If you are a clairvoyant, then ...
— first you rent, but as soon as you buy, you will lose interest in skiing

u <1 month - just renting is better > cost,(u) = u kFr

u>1month -> just buying is better = cost,,(u) = 1 kFr

= cost,y(u) = min(u, 1)
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Competitive Analysis
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Randomized Ski Rental with infinitely many Values (1)
o Letr(u, z! be the competitive ratio Uninteresting for Adv:
for all pairs of uand z Player will always buy early
e We are looking for the expected Comp. ratio is (z+1) /1
competitive ratio E[c]
1
e Adversary chooses u with uniform )
distribution Good for Adv:
= Comp. ratio is
= +1)/
” r(u, z)dzdu 5| b
E[c] = £
”dzdu 5
5
> ~ ~
741 s Good for Algo
I I —d du . Comp. ratio is
u=0+2=0 u/u
= 1.75
0 Algorithm: z 1
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Definition

An online algorithm A is c-competitive if for all finite input sequences /
costy(/) < c cost,(l) + k

where k is a constant independent of the input.

If k =0, then the online algorithm is called strictly c-competitive.

When strictly c-competitive, it holds
cost a(u) <c
COStopt(U)

Example
— Ski rental is strictly 2-competive. The best algorithm is z = 1.

Randomized Ski Rental

e Deterministic Algorithm

— has a big handicap, because the adversary knows z and can always present a u
which is worst-case for the algorithm

— only hope: algorithm makes random decisions
¢ Randomized Algorithm
— chooses randomly between 2 values z, und z, (with z, < z,)
with probabilities p, and p, = (1 - p,)
u ifu <z
costa(u) =< pr-(z1+1)+ps-u ifz; <u<z
pro(i+ 1D +p-(2+1) ifzm<u

— adversary chooses randomly

— u, =z, + € with probability g, What about choosing

randomly between more
e Example than 2 values???

- 2,=%,2,=1,p,=2/5,p,=3/5

— E[c] = cost,/ cost,, = 1.8

— u, =z, + € with probability g, =1-¢q,
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Randomized Ski Rental with infinitely many Values (2)

e Algorithm chooses z with probability distribution p(z)
— it chooses p(z) such that it minimizes E[c]

e Adversary chooses u with probability distribution d(u)
— it chooses d(u) such that it maximized E[c]

.’bl fo (2 + D)p(2)d(u)dzdu + I;, l“ up(z)d(uw)dzdu
I up(2)d(u)dzdu

1

Eld =

/])(:) - ’([(“) - l Good for Adv:

Comp. ratio is
(zt1)/u

How to find these probability distributions?
— This is a very hard task!

Adversary/Input: u

Good for Algo
Comp. ratio is
u/u

- We should make the problem independent
of the adversarial distribution d(u).

Algorithm: z
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Randomized Ski Rental with infinitely many Values (3)

e |dea

Choose the algorithm’s probability function p(z) such that
cost,(u) < ¢ cost,,(u) for all u

-> adversarial distribution d(u) doesn’t matter anymore

* cost,,(u) = u forall u between O und 1

u 1
[ (fz+l)p(2)d2+/ u-p(2)dz <c-u

J0 1

1
with / p(z)dz =1
Jo

¢ Having a hunch: the best probability function p(z) will be an equality
> With p(2) = 2. we have an algorithm that is —*

-competitive in

; e—1 e—1
expectation.
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TCP: Transmission Control Protocol
e Layer 4 Networking Protocol application
— transmission error handling networ
data ."" network
— correct ordering of packets physical | data fink
- 0, .Lid physical
C ink
: i /
. ug ” S 11 k
— exponential (“friendly”) slow start % PR
mechanism: should prevent physical QELW?,:i
network overloading by new 2 physical
connections . etwork
e s link
ical
— flow control: prevents buffer P p———

@ anspo
networl

@ @ data link
5 5 physical

overloading

— congestion control: should prevent
network overloading
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Can we get any better??? - Lower Bounds

e Von Neumann / Yao Principle

Choose a distribution over problem instances (for ski rental, e.g. d(u)).
If for this distribution all deterministic algorithms cost at least c,
then cis a lower bound for the best possible randomized algorithm.

e Ski Rental

— we are in a lucky situation, because we can parameterize all possible
deterministic algorithms by z> 0

— choose a distribution of inputs with d(u) 2 0and [ d(u) = 1

e Examples:d(u)=%forO<u<landd(ee)=%
> cost,_o(d(u)) =1 cost,,(d(u)) =1+2z/2-72/4>1
-> cost,_,(d(u)) =5/4 cost,.,(d(u)) =%+ (z+1)/2>5/4
= cost,,(d(u)) =%
2>c/ costyp = 1/% =4/3=1.33
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Packet Acknowledgment
Sender
e Sequence number in packet header
e  “Window” of up to N consecutive unack’ed packets allowed
send_base  nextsegnum dlready usable, not

i i ack’ed yet sent
TR CDCEOTITI0000I0 [ et oroseme

£ window size —*4

N

e ACK(n): ACKs all packets up to and including sequence number n
— a.k.a. cumulative ACK
— sender may get duplicate ACKs

» timer for each in-flight packet

» timeout(n): retransmit packet n and all higher seg# packets in
window

5/12



The TCP Acknowledgment Problem

¢ Definition
The receiver’s goal is a scheme which minimizes the number of
acknowledgments plus the sum of the latencies for each packet, where the
latency of a packet is the time difference from arrival to acknowledgment.

e Given
n packet arrivals, at times: a,, 05, ..., a,
k acknowledgments, at times t,, t,, ..., t, T

latency(i) = t;— a, where jsuch that t; ; <a;< ¢;
* Minimize TI—F

b Received packets

(k +Y. Iatency(i)j Packs

i=1

Acks

time
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The TCP Acknowledgment Problem: z=1 Algorithm (2)

e lemma

— The optimal algorithm sends an ACK between any pair of consecutive ACKs by
algorithm with z = 1.

* Proof
— For the sake of contradiction, assume that, among all algorithms who achieve
the minimum possible cost, there is no algorithm which sends an ACK
between two ACKs of the z =1 algorithm.
— We propose to send an additional ACK at the beginning (left side) of each

z =1 rectangle.
Since this ACK saves latency 1, it compensates the cost of the extra ACK.

— That is, there is an optimal algorithm who chooses this extra ACK.
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The TCP Acknowledgment Problem: z=1 Algorithm (1)

e z=1Algorithm is: Whenever a rectangle with area z = 1 does fit between
the two curves, the receiver sends an acknowledgement, acknowledging
all previous packets.

A Received packets

Packs N

o
j z=1 time
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The TCP Acknowledgment Problem: z=1 Algorithm (3)
e Theorem: The z = 1 algorithm is 2-competitive.
4 Received packets
Packs
opt
z=1
time
e Similarity to Ski Rental
— it’s possible to choose any z
— if you wait for a rectangle of size z with probability p(z) = e?/(e-1)
- randomized TCP ACK solution, which is e/(e-1) competitive
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Simple TCP Congestion Scenario The TCP Congestion Control Problem

congestion
too many sources sending too much data
too fast for the network to handle

e Main Question

How many packets per second can a sender inject into the network without
overloading it?

e two equal senders, bt A o s i i e Assumptions
i -q/ .~ Orginal aata q———

two receivers h n Aot — sender does not know the bandwidth between itself and the receiver

e one router wit Host B . . .
e — — the bandwidth might change over time
infinite buffer space e Wi 'ght change overt
and with service rate * Model E"aCketS
C \“;;?-I 11711 |(A) — time divided into

e iods {t} u I:
router with perio t —
infinite buffers — unknown bandwidth X |
threshold u, -
e large delays c/2 .
when congested & § — sender transmits > time
i 5 [J] i X, packets 0 1 2 3 4 5 6 7
* maximum 3 o i _ _
achievable < e Severe Cost and Gain Function
throughput | — gain, = u,— cost,
2 C/2 2 c/2 — X Su,:cost =u,—Xx, > gain,=x,
in in - x>u.:cost,=u, > gain, =0
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The TCP Congestion Control Problem: The Dynamic Model Bandwidth in a Fixed Interval: Deterministic Algorithm

e Competitive Analysis Definition e Preconditions
An online algorithm A is strictly c-competitive if for all finite input sequences / adversary chooses u, < [a, b]
cost,(/) < c - cost, . (/ ; '

all) <c °”t( ) — algorithm is aware of the lower bound a and the upper bound b

or
i ) e Deterministic Algorithm
c - gain,(/) 2 gaing,(/). ) ]
— If the algorithm plays x, > a in round t, then the adversary plays u, = a
- gain=0

* The Dynamic Model — Therefore the algorithm must play x, = a in each round in order to have at

— algorithm: chooses a sequence { x, } least gain = a.

— adversary: knows the algorithm’s sequence and chooses a sequence { u, } — The adversary knows this, and will therefore play u, = b.
e Problem — Therefore, gain,,, = a, gain,,, = b, competitive ratio c = b/a.

— Adversary is too strong: Vt: u, < x, = gain, =0
e Reasonable restrictions
— Bandwidth in a fixed interval: u, € [a, b]
— Multiplicatively or additively changing bandwidth from step to step
— Changes with bursts
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Bandwidth in a Fixed Interval: Randomized Algorithm

e Let’s try the ski rental trick!
— For all possible inputs u € [a, b] we want the same competitive ratio:

c gainy(u) = gain,,,(u) = u

¢ Randomized Algorithm

— We choose x = a with probability p,, and any value in x € (a, b] with
probability density function p(x), with  p, + /,f’ niz)dr = 1.

e Theorems
— There is an algorithm that is c-competitive, with c = 1 + In(b/a).

— There is no randomized algorithm which is better than c-competitive, with ¢ =
1+ In(b/a).

e Remark
— Upper and lower bound are tight.
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Changes with Bursts

e Bursty Adversary

— 2 parameters: i 2 1 and maximum burst factor“B 21

[ ! Uy - -“f/ : /1]

— adversary chooses u,,, from the interval Bt ’

B = min{ B, -y s l'd}ne burst factor at time t and

where
where ¢, = u,/u,, if u, > u,; and u,,/u, otherwise

u

Wt Ut > Ut
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Multiplicatively Changing Bandwidth

e Preconditions
— adversary chooses u,,, such that u,/u < u,,, <pu, withp>1, e.g. 1.05
— algorithm knows u; and p

e Algorithm A,
— after a successful transmission in period t, the algorithm chooses x,,; = p X,
— otherwise: x,,; = x,/p3

e Theorem
— The algorithm A is (u* + p)-competitive

e Algorithm A,
— after a successful transmission in period t, the algorithm chooses x,,; = 1 X,
- otherwise: x,; = x,/2

e Theorem
— The algorithm A, is (4p1)-competitive

5/22



