Distributed
 Computing

Discrete Event Systems

Solution to Exercise Sheet 8

1 Dolce Vita in Rome

We define the following random variables.

$$
\begin{aligned}
X & =\text { number of ice creams bought in total } \\
X_{i} & =\text { indicator variable for buying ice cream at shop } i
\end{aligned}
$$

That means X_{i} is 1 if Hector and Rachel buy ice cream at shop i and 0 otherwise. Since the probability that the i-th shop is the best so far equals $\frac{1}{i}$ and the expectation of an indicator variable is simply the probability of it being 1 , we have

$$
\mathbf{E}\left[X_{i}\right]=\frac{1}{i}
$$

Furthermore, we can express X as $\sum_{i=1}^{n} X_{i}$ and by using linearity of expectation, we obtain:

$$
\mathbf{E}[X]=\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{i}=H_{n} .
$$

Here H_{n} is the n-th Harmonic Number. H_{n} grows about as fast as the natural logarithm of n. The reason for this is that the sum of the first n harmonic numbers can be approximated by

$$
\int_{1}^{n} \frac{1}{x} \mathrm{~d} x=\ln (n) .
$$

More precisely, we have $H_{n}=\ln (n)+\mathcal{O}(1)$ and thus the two students roughly consume a logarithmic number of ice creams (in the total number of shops n).

2 Soccer Betting

a) The following Markov chain models the different transition probabilities (W :Win, $T:$ Tie, L :Loss):

b) The transition matrix P is

$$
P=\left(\begin{array}{lll}
0.6 & 0.2 & 0.2 \\
0.3 & 0.4 & 0.3 \\
0.1 & 0.2 & 0.7
\end{array}\right) .
$$

As you might have noticed, we gave redundant information here. You only need the information that the FCB lost its last game. Thus, the Markov chain is currently in the state L and hence, the initial vector is $q_{0}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$. The probability distribution q_{2} for the game against the FC Zurich is therefore given by

$$
\begin{aligned}
q_{2} & =q_{0} \cdot P^{2}=\left(q_{0} \cdot P\right) \cdot P=\left(\begin{array}{lll}
0.1 & 0.2 & 0.7
\end{array}\right) \cdot\left(\begin{array}{ccc}
0.6 & 0.2 & 0.2 \\
0.3 & 0.4 & 0.3 \\
0.1 & 0.2 & 0.7
\end{array}\right) \\
& =\left(\begin{array}{lll}
0.19 & 0.24 & 0.57
\end{array}\right) .
\end{aligned}
$$

(Note that q_{0} must be a row vector, not a column vector.)
Hint: We exploited the associativity of the matrix multiplication to avoid having to calculate P^{2} explicitly. This is usually a good "trick" to avoid extensive and error-prone calculations if no calculator is at hand (as for example in an exam situation $\ddot{-}$).
Given the quotas of the exercise, the expected return for each of the three possibilities (W, $T, L)$ calculates as follows.

$$
\begin{aligned}
& \mathbf{E}[W]=0.19 \cdot 3.5=0.665 \\
& \mathbf{E}[T]=0.24 \cdot 4=0.96 \\
& \mathbf{E}[L]=0.57 \cdot 1.5=0.855
\end{aligned}
$$

Therefore, the best choice is not to bet at all since the expected return is smaller than 1 for every choice. If a "sales representative" of the Swiss gambling mafia were to force you to bet, you would be best off with betting on a tie, though.
c) The new Markov chain model looks like this. In addition to the three states W, T, and L, there is now a new state $L L$ which is reached if the team has lost twice in a row.

The new transition matrix P is

$$
P=\left(\begin{array}{cccc}
0.6 & 0.2 & 0.2 & 0 \tag{1}\\
0.3 & 0.4 & 0.3 & 0 \\
0.1 & 0.2 & 0 & 0.7 \\
0.05 & 0.1 & 0 & 0.85
\end{array}\right)
$$

As the FCB has and lost its last two games, the Markov chain is currently in the state $q_{0}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$. The probabilities for the game against the FC Zurich can again be
computed as follows.

$$
\begin{aligned}
q_{3} & =q_{0} \cdot P^{2}=\left(\begin{array}{llll}
\left.q_{0} \cdot P\right) \cdot P=\left(\begin{array}{llll}
0.05 & 0.1 & 0 & 0.85
\end{array}\right) \cdot\left(\begin{array}{cccc}
0.6 & 0.2 & 0.2 & 0 \\
0.3 & 0.4 & 0.3 & 0 \\
0.1 & 0.2 & 0 & 0.7 \\
0.05 & 0.1 & 0 & 0.85
\end{array}\right) \\
& =\left(\begin{array}{llll}
0.1025 & 0.135 & 0.04 & 0.7225
\end{array}\right)
\end{array}\right. \text { (1)}
\end{aligned}
$$

Finally, we can compute the expected profit for each of the three possible bets:

$$
\begin{array}{rlrl}
\mathbf{E}[W] & =0.1025 \cdot 3.5 & & =0.35875 \\
\mathbf{E}[T] & =0.135 \cdot 4 & & =0.54 \\
\mathbf{E}[L] & =(0.04+0.7225) \cdot 1.5 & =1.14375 .
\end{array}
$$

Now, the best choice is to bet on a loss. Clearly, the addition of the state $L L$ worsens the situation for FCB.

3 The Winter Coat Problem

a) The following Markov chain models the weather situation of Robinson's island.

b) We need to determine the expected hitting time $h_{S S}$. Using the formula of slide 35 , we obtain the following equation system:

$$
\begin{align*}
& h_{S S}=1+0.3 h_{C S}+0.2 h_{R S} \tag{2}\\
& h_{C S}=1+0.1 h_{C S}+0.2 h_{R S} \tag{3}\\
& h_{R S}=1+0.4 h_{C S}+0.5 h_{R S} \tag{4}
\end{align*}
$$

(2) and (3) yield that $h_{C S}=\frac{5}{6} h_{S S}$, from (2) and (4) we obtain that $h_{R S}=\frac{40}{23} h_{S S}-\frac{10}{23}$. Plugging these results into (2), we obtain

$$
\begin{aligned}
& h_{S S}
\end{aligned}=1+0.3\left(\frac{5}{6} h_{S S}\right)+0.2\left(\frac{40}{23} h_{S S}-\frac{10}{23}\right)
$$

Thus, Mr. Robinson has to wait 2.27 days (in expectation) until having again a sunny day. (Note: Between two sunny days, there are (in expectation) 1.27 non-sunny days.)
c) The modified Markov chain looks as follows:

d) We need to determine the arrival probability $f_{S W}$, the probability that the weather will turn to winter. Using the formula of slide 35 , we obtain the following equation system:

$$
\begin{align*}
f_{S W} & =0+0.3 f_{C W}+0.2 f_{R W}+0.49 f_{S W}+0.01 f_{H W} \tag{5}\\
f_{C W} & =0+0.7 f_{S W}+0.2 f_{R W}+0.1 f_{C W} \tag{6}\\
f_{R W} & =0.01+0.4 f_{C W}+0.1 f_{S W}+0.49 f_{R W} \tag{7}\\
f_{H W} & =0 \tag{8}
\end{align*}
$$

Solving the equation system yields

$$
f_{S W}=\frac{240}{619}, f_{R W}=\frac{249}{619}, f_{C W}=\frac{242}{619}
$$

And therefore, the probability that the weather turns to winter (snowing) and Mr. Robinson needs a winter coat is $\frac{240}{619} \approx 0.39$. Note that $f_{S H}=1-f_{S W}=\frac{379}{619}$ because all state sequences that do not end up in state W eventually end up in state H.

