
Distributed
 Computing

HS 2012 Prof. C. Stamm / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems
Solution to Exercise Sheet 6

1 The Winter Train Problem

We can model each train individually and combine the corresponding sub-states using an AND-
super-state, see the figure below. Additionally, in order to “synchronize” the trains, a third
sub-state is needed (shown in the middle) which implements a mutual exclusion: For instance,
if there is no train between Stans and Engelberg and if train 1 is in state c1, T1 can enter
the critical section and train 2 has to wait. (Notice that if both trains are in states c1 and c2
respectively, T1 has priority.)

• The trains start at their states m1 and m2. When m1 (m2) is pressed, then train 1 (2)
moves to the right in n1 (n2), until it reaches the switch, where it stops in state o1 (o2).

• Now the ”middle”-state can change its state to either y or z, depending on which train got
there first. If train 1 (2) arrives first, then the state is changed to y (z) and train 1 (2) can
move to state p1 (p2) while moving right.

• After arriving at the station Engelberg, the train waits for 100s, then moves to the left and
switches to state q1 (q2) – until it hits the switch at b1 (b0), upon which the ”middle”-state
can change again – and the train continues to its original station, where it stops.

Positions of the trains (train 1 ; train 2):

• m1: Lucerne ; m2: Sarnen

• n1: Between Lucerne and the switch ; n2: Between Sarnen and the switch

• o1: At the left side of the switch ; o2: At the left side of the switch

• p1: Between the switch and Engelberg ; p2: Between the switch and Engelberg

• q1: Between Engelberg and the switch ; q2: Between Engelberg and the switch

• r1: Between the switch and Lucerne ; Between the switch and Sarnen

2 Structural Properties of Petri Nets and Token Game

a) The pre and post sets of a transition are defined as follows:

• pre set: •t := {p | (p, t) ∈ C}
• post set: t• := {p | (t, p) ∈ C},

the pre and post sets of a place are defined analogously.

For the petri net N1 we obtain the following sets:

•t5 = {p5, p9}, t5• = {p6}
•t8 = {p8}, t8• = {p10, p5}
•p3 = {t2}, p3• = {t3}

b) A transition is enabled if all places in its pre set contain enough tokens. In the case of N1,
which has only unweighted edges, one token per place suffices. When t2 fires, it consumes
one token out of each place in the pre set of t2 and produces one token on each place in
the post set of t2. Hence, the firing of t2 produces one token on place p3 and p9 each, the
one on p2 is consumed. After this, t5 is enabled because both p9 and p5 hold one token.
However, t3 is not enabled because p3 contains a token but p10 does not.

c) Before t2 fires there are two tokens in N1, one on p2 and p5 each. Directly afterwards,
there are tokens on places p3, p9 und p5.

d) A token traverses the upper cycle until t2 fires. Then one token remains on p3 and waits,
and another one is produced in p9, which enables transition t5. When t5 consumes the
tokens on p9 and p5 and produces a token on p6, this one can traverse the lower cycle until
t8 is enabled. One token now remains on p5 and waits, another one enables t3, because
there is still one token on p3. Now one token traverses the upper cycle again until t2 is
enabled, and so on.

Hence, this petri net models two processes which always appear alternately.

The reachability graph RG(P,~s0) of a petri net P is a quadruple (S,S0, Act,E) such that

• S is the set of reachable states of P starting from ~s0

• S0 := {~s0} is the start state of P

• Act is the set of transition labels

• E ⊆ S×Act× S is the set of edges such that E = {
(
~s, t, δ(~s, t)

)
| ~s ∈ S∧ t ∈ T ∧ ~s . t}

2

Usually the states of the petri net are denoted by vectors such that the i-th position in the
vector indicates the number of tokens on place pi of the petri net. So, for example, the
starting state ~s0 of N1, in which the places p1 and p5 hold one token each, is denoted by
~s0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0). Hence, the reachability graph looks as follows:

S = { (1, 0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0, 1, 0),

(0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 1, 0, 1, 0, 0, 0, 0, 1), (0, 0, 0, 1, 1, 0, 0, 0, 0, 0) },

S0 = { (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) },

Act = { t1, t2, t3, t4, t5, t6, t7, t8, t9, t10 },

E = {
(
(1, 0, 0, 0, 1, 0, 0, 0, 0, 0), t1, (0, 1, 0, 0, 1, 0, 0, 0, 0, 0)

)
,(

(0, 1, 0, 0, 1, 0, 0, 0, 0, 0), t2, (0, 0, 1, 0, 1, 0, 0, 0, 1, 0)
)
,(

(0, 0, 1, 0, 1, 0, 0, 0, 1, 0), t5, (0, 0, 1, 0, 0, 1, 0, 0, 0, 0)
)
,(

(0, 0, 1, 0, 0, 1, 0, 0, 0, 0), t6, (0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
)
,(

(0, 0, 1, 0, 0, 0, 1, 0, 0, 0), t7, (0, 0, 1, 0, 0, 0, 0, 1, 0, 0)
)
,(

(0, 0, 1, 0, 0, 0, 0, 1, 0, 0), t8, (0, 0, 1, 0, 1, 0, 0, 0, 0, 1)
)
,(

(0, 0, 1, 0, 1, 0, 0, 0, 0, 1), t3, (0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
)
,(

(0, 0, 0, 1, 1, 0, 0, 0, 0, 0), t4, (1, 0, 0, 0, 1, 0, 0, 0, 0, 0)
)
}.

For better legibility we denote the states in such a way that the index contains the places
that hold a token in this state, for example ~s0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) = s1,5.

Then the reachability graph can also be specified as follows:

s1,5 s2,5 s3,5,9 s3,6 s3,7 s3,8 s3,5,10 s4,5
t1 t2 t5 t6 t7 t8 t3

t4

3 Basic Properties of Petri Nets

A petri net is k-bounded, if there is no fire sequence that makes the number of tokens in one
place grow larger than k. It is obvious that petri net N2 is 1-bounded if k ≤ 1. This holds
because in the initial state there is only one token in the net, and in the case k ≤ 1 no transition
increases the number of tokens in N2. If k ≥ 2, the number of tokens in p1 can grow infinitely
large by repeatedly firing t1, t3 and t4. So, the petri net N2 is unbounded for k ≥ 2.

A petri net is deadlock free if no fire sequence leads to a state in which no transition is enabled.
If k = 0, N2 is not deadlock-free. The fire sequence t1, t3, t4 causes the only existing token to be
consumed and hence, there is no enabled transition any more. For k ≥ 1, however, no deadlock
can occur.

4 Mutual Exclusion

For each process we introduce two places (p1, p2, p3 und p4) representing the process within the
normal program execution (p1, p2) as well as in the critical section (p3, p4). For each process,
we have a token indicating which section of the program currently is executed. Additionally, we
introduce a place p0 representing the mutex variable. If the mutex variable is 0, then we have a

3

token at p0. We have to make sure that a process can only enter its critical section if there is a
token at the mutex place. The resulting petri net looks as follows.

p0

p1

t1

t3

p3

p2

t2

t4

p4

Assume that initially, both processes are in an uncritical section (in the petri net, this is denoted
by a token in place p1 and p2 respectively). A process can only enter its critical section (p3/p4)
if there is a token at p0. In this case, the token is consumed when entering the critical section.
A new mutex token at p0 is not created until the process leaves its critical section. Hence, both
processes exclude each other mutually from the concurrent access to the critical section.

4

