Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Distributed
 Computing

HS 2012
Prof. C. Stamm / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems

Solution to Exercise Sheet 6

1 The Winter Train Problem

We can model each train individually and combine the corresponding sub-states using an AND-super-state, see the figure below. Additionally, in order to "synchronize" the trains, a third sub-state is needed (shown in the middle) which implements a mutual exclusion: For instance, if there is no train between Stans and Engelberg and if train 1 is in state c1, T1 can enter the critical section and train 2 has to wait. (Notice that if both trains are in states c1 and c2 respectively, T1 has priority.)

- The trains start at their states m 1 and m 2 . When $\mathrm{m} 1(\mathrm{~m} 2)$ is pressed, then train 1 (2) moves to the right in $\mathrm{n} 1(\mathrm{n} 2)$, until it reaches the switch, where it stops in state o1 (o2).
- Now the "middle"-state can change its state to either y or z, depending on which train got there first. If train $1(2)$ arrives first, then the state is changed to $y(z)$ and train 1 (2) can move to state $\mathrm{p} 1(\mathrm{p} 2)$ while moving right.
- After arriving at the station Engelberg, the train waits for 100s, then moves to the left and switches to state q1 (q2) - until it hits the switch at b1 (b0), upon which the "middle"-state can change again - and the train continues to its original station, where it stops.

Positions of the trains (train 1 ; train 2):

- m1: Lucerne ; m2: Sarnen
- n1: Between Lucerne and the switch ; n2: Between Sarnen and the switch
- o1: At the left side of the switch ; o2: At the left side of the switch
- p1: Between the switch and Engelberg ; p2: Between the switch and Engelberg
- q1: Between Engelberg and the switch ; q2: Between Engelberg and the switch
- r1: Between the switch and Lucerne ; Between the switch and Sarnen

2 Structural Properties of Petri Nets and Token Game

a) The pre and post sets of a transition are defined as follows:

- pre set: $\bullet t:=\{p \mid(p, t) \in C\}$
- post set: $t \bullet:=\{p \mid(t, p) \in C\}$,
the pre and post sets of a place are defined analogously.
For the petri net N_{1} we obtain the following sets:

$$
\begin{array}{llrl}
\bullet t_{5} & =\left\{p_{5}, p_{9}\right\}, & & t_{5} \bullet \\
\bullet \bullet & =\left\{p_{6}\right\} \\
\bullet t_{8} & =\left\{p_{8}\right\}, & & t_{8} \bullet=\left\{p_{10}, p_{5}\right\} \\
\bullet p_{3} & =\left\{t_{2}\right\}, & p_{3} \bullet=\left\{t_{3}\right\}
\end{array}
$$

b) A transition is enabled if all places in its pre set contain enough tokens. In the case of N_{1}, which has only unweighted edges, one token per place suffices. When t_{2} fires, it consumes one token out of each place in the pre set of t_{2} and produces one token on each place in the post set of t_{2}. Hence, the firing of t_{2} produces one token on place p_{3} and p_{9} each, the one on p_{2} is consumed. After this, t_{5} is enabled because both p_{9} and p_{5} hold one token. However, t_{3} is not enabled because p_{3} contains a token but p_{10} does not.
c) Before t_{2} fires there are two tokens in N_{1}, one on p_{2} and p_{5} each. Directly afterwards, there are tokens on places p_{3}, p_{9} und p_{5}.
d) A token traverses the upper cycle until t_{2} fires. Then one token remains on p_{3} and waits, and another one is produced in p_{9}, which enables transition t_{5}. When t_{5} consumes the tokens on p_{9} and p_{5} and produces a token on p_{6}, this one can traverse the lower cycle until t_{8} is enabled. One token now remains on p_{5} and waits, another one enables t_{3}, because there is still one token on p_{3}. Now one token traverses the upper cycle again until t_{2} is enabled, and so on.

Hence, this petri net models two processes which always appear alternately.
The reachability graph $R G\left(P, \vec{s}_{0}\right)$ of a petri net P is a quadruple $\left(\mathbb{S}, \mathbb{S}_{0}, A c t, \mathbb{E}\right)$ such that

- \mathbb{S} is the set of reachable states of P starting from \vec{s}_{0}
- $\mathbb{S}_{0}:=\left\{\vec{s}_{0}\right\}$ is the start state of P
- Act is the set of transition labels
- $\mathbb{E} \subseteq \mathbb{S} \times A c t \times \mathbb{S}$ is the set of edges such that $\mathbb{E}=\{(\vec{s}, t, \delta(\vec{s}, t)) \mid \vec{s} \in \mathbb{S} \wedge t \in T \wedge \vec{s} \triangleright t\}$

Usually the states of the petri net are denoted by vectors such that the i-th position in the vector indicates the number of tokens on place p_{i} of the petri net. So, for example, the starting state \vec{s}_{0} of N_{1}, in which the places p_{1} and p_{5} hold one token each, is denoted by $\vec{s}_{0}=(1,0,0,0,1,0,0,0,0,0)$. Hence, the reachability graph looks as follows:

$$
\begin{aligned}
& \mathbb{S}=\{\quad(1,0,0,0,1,0,0,0,0,0),(0,1,0,0,1,0,0,0,0,0),(0,0,1,0,1,0,0,0,1,0), \\
& (0,0,1,0,0,1,0,0,0,0),(0,0,1,0,0,0,1,0,0,0),(0,0,1,0,0,0,0,1,0,0) \text {, } \\
& (0,0,1,0,1,0,0,0,0,1),(0,0,0,1,1,0,0,0,0,0) \quad\}, \\
& \mathbb{S}_{0}=\{\quad(1,0,0,0,1,0,0,0,0,0) \quad\}, \\
& A c t=\left\{\quad t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}, t_{9}, t_{10} \quad\right\}, \\
& \mathbb{E}=\left\{\quad\left((1,0,0,0,1,0,0,0,0,0), t_{1},(0,1,0,0,1,0,0,0,0,0)\right),\right. \\
& \left((0,1,0,0,1,0,0,0,0,0), t_{2},(0,0,1,0,1,0,0,0,1,0)\right) \text {, } \\
& \left((0,0,1,0,1,0,0,0,1,0), t_{5},(0,0,1,0,0,1,0,0,0,0)\right) \text {, } \\
& \left((0,0,1,0,0,1,0,0,0,0), t_{6},(0,0,1,0,0,0,1,0,0,0)\right) \text {, } \\
& \left((0,0,1,0,0,0,1,0,0,0), t_{7},(0,0,1,0,0,0,0,1,0,0)\right) \text {, } \\
& \left((0,0,1,0,0,0,0,1,0,0), t_{8},(0,0,1,0,1,0,0,0,0,1)\right) \text {, } \\
& \left((0,0,1,0,1,0,0,0,0,1), t_{3},(0,0,0,1,1,0,0,0,0,0)\right) \text {, } \\
& \left.\left((0,0,0,1,1,0,0,0,0,0), t_{4},(1,0,0,0,1,0,0,0,0,0)\right) \quad\right\} .
\end{aligned}
$$

For better legibility we denote the states in such a way that the index contains the places that hold a token in this state, for example $\vec{s}_{0}=(1,0,0,0,1,0,0,0,0,0)=s_{1,5}$.
Then the reachability graph can also be specified as follows:

3 Basic Properties of Petri Nets

A petri net is k-bounded, if there is no fire sequence that makes the number of tokens in one place grow larger than k. It is obvious that petri net N_{2} is 1 -bounded if $k \leq 1$. This holds because in the initial state there is only one token in the net, and in the case $k \leq 1$ no transition increases the number of tokens in N_{2}. If $k \geq 2$, the number of tokens in p_{1} can grow infinitely large by repeatedly firing t_{1}, t_{3} and t_{4}. So, the petri net N_{2} is unbounded for $k \geq 2$.
A petri net is deadlock free if no fire sequence leads to a state in which no transition is enabled. If $k=0, N_{2}$ is not deadlock-free. The fire sequence t_{1}, t_{3}, t_{4} causes the only existing token to be consumed and hence, there is no enabled transition any more. For $k \geq 1$, however, no deadlock can occur.

4 Mutual Exclusion

For each process we introduce two places $\left(p_{1}, p_{2}, p_{3}\right.$ und $\left.p_{4}\right)$ representing the process within the normal program execution $\left(p_{1}, p_{2}\right)$ as well as in the critical section $\left(p_{3}, p_{4}\right)$. For each process, we have a token indicating which section of the program currently is executed. Additionally, we introduce a place p_{0} representing the mutex variable. If the mutex variable is 0 , then we have a
token at p_{0}. We have to make sure that a process can only enter its critical section if there is a token at the mutex place. The resulting petri net looks as follows.

Assume that initially, both processes are in an uncritical section (in the petri net, this is denoted by a token in place p_{1} and p_{2} respectively). A process can only enter its critical section $\left(p_{3} / p_{4}\right)$ if there is a token at p_{0}. In this case, the token is consumed when entering the critical section. A new mutex token at p_{0} is not created until the process leaves its critical section. Hence, both processes exclude each other mutually from the concurrent access to the critical section.

