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Discrete Event Systems

Solution to Exercise Sheet 13

1 Power-Down Mechanisms

As mentioned in the hint, we only focus on a single idle period because if we know that our
algorithm is c-competitive for any idle period, we also know that it is c-competitive for the
complete busy sequence.

a) Analogously to the 2-competitive ski-rental online algorithm, we consider an algorithm ALG
that powers down after D time units. To see that ALG is 2-competitive, we distinguish
two cases for the length of the current idle period T

e T < D: The energy consumed by both algorithms is ca,e = copr = T, hence the
competitive ratio is ¢ =T/T = 1.

e T'> D: We have cp o = D+ D since ALG waits D time units and then powers-down
and copr = D because OPT powers down immediately. Hence we get
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b) Let ALG be any deterministic power down algorithm. Then the time ta;¢ after which
it powers down in an idle period is known in advance. The “worst” idle period ends
immediately after ALG has powered down, that is we have T' = ta;¢ + . Again, we
distinguish two cases with respect to the time ¢4, when ALG powers down.

e tae < D: We have capq = tae + D and copr = targ + €, hence
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since tare < D.
e tae > D: We have carq = tae + D again and copr = D, hence
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since ta; g > D.
Hence, ALG cannot be better than 2-competitive.

c) Let ALG be a randomised algorithm that powers down at time %D with probability % and
at time D otherwise. Let Ca;¢ be a random variable for the cost incurred by the algorithm.
We again consider an arbitrary idle period of length 7. We distinguish three cases:

o T < %D: The energy consumption of both algorithms is caq = copr = T, hence
c=T/T=1<2.



D < T < D: The expected energy consumption of ALG is
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and further copr = T'. Hence we get
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e T'> D: We have for the expected energy consumption of ALG
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and further copr = D. Hence we get
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Hence, the randomised algorithm is %—competitive which is better than any deterministic

algorithm.

Note: This result, however, is not optimal yet. The best randomised algorithm uses a con-
tinuous probability distribution for the shutdown time and thereby achieves a competitive
ratio of e/(e — 1) ~ 1.58.

PhD-Scheduling [Exam]

a) (i) SMALLLOAD distributes the tasks as follows:

PhD student 1: \ 2 | 4 | 7 \

PhD student 2: ‘ 5 | 4 ‘

OPT uses the following distribution (or another one with the same cost):
PhD student 1: [ 2 | 5 I

PhD student 2: 4 | 7 ‘

SMALLLOAD thus distributes the tasks with cost ALG(¢) = 13 while OPT incurs a
cost of OPT(0) = 11. Hence,
Avc(o) 13
plo) = Opr(o) 11 °

(ii) The following sequence results in a larger competitive ratio: o = 1,1,2. We have
ALG(o) = 3 and OpT(0) = 2 and thus
ALG(o) 3
plo) = Opr(s) 2 °

(iii) See b).
(iv) No, finding the optimal solution offline corresponds to solving the PARTITION-problem,
which is NP-complete, thus presumably no efficient algorithm exists for the problem.

b) We first show a lower bound of (2 — ) on the competitive ratio of SMALLLOAD. To this

end, we choose an input sequence that consists of m(m — 1) tasks of size 1 concluded with

a task of size m, i.e. 0 = 1,...,1,m. After assigning the first m(m — 1) tasks, SMALLLOAD
——
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has assigned m — 1 units to each of the m PhD students. The last task of size m incurs a
load of 2m — 1 for the student to whom it is assigned.

The optimal algorithm assigns the first m(m — 1) taks to only m — 1 students and the last
(heavy) task to the remaining student. This results in a maximal load of m and we get the
following lower bound for the competitive ratio:
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Now we shall show a matching upper bound for the competitive ratio. Let o = (e, ea,...)
be an arbitrary input sequence. Without loss of generality, we assume s; to be the student
with the maximal load for o. Furthermore, let w be the effort of the last task T" assigned
s1 and E the load of s; before assigning its last task. The load of all other students must
be at least F since s; was the student with minimal load when he was assigned task T
(otherwise another student would have received T'). Hence, the sum of the loads of all
students is at least m - E + w and hence
Opr(oy > W EFXY _pL v
m m
Using OpT(0) > w, we get

ALc(o)=w+E



