
Distributed
    Computing 

HS 2012 Prof. C. Stamm / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems
Solution to Exercise Sheet 13

1 Power-Down Mechanisms

As mentioned in the hint, we only focus on a single idle period because if we know that our
algorithm is c-competitive for any idle period, we also know that it is c-competitive for the
complete busy sequence.

a) Analogously to the 2-competitive ski-rental online algorithm, we consider an algorithm Alg
that powers down after D time units. To see that Alg is 2-competitive, we distinguish
two cases for the length of the current idle period T :

• T < D: The energy consumed by both algorithms is cAlg = cOpt = T , hence the
competitive ratio is c = T/T = 1.

• T ≥ D: We have cAlg = D+D since Alg waits D time units and then powers-down
and cOpt = D because Opt powers down immediately. Hence we get

c =
2D

D
= 2 .

b) Let Alg be any deterministic power down algorithm. Then the time tAlg after which
it powers down in an idle period is known in advance. The “worst” idle period ends
immediately after Alg has powered down, that is we have T = tAlg + ε. Again, we
distinguish two cases with respect to the time tAlg when Alg powers down.

• tAlg < D: We have cAlg = tAlg +D and cOpt = tAlg + ε, hence

c =
tAlg +D

tAlg + ε
= 1 +

D − ε
tAlg + ε

> 2 for ε→ 0

since tAlg < D.

• tAlg ≥ D: We have cAlg = tAlg +D again and cOpt = D, hence

c =
tAlg +D

D
= 1 +

tAlg

D
≥ 2 for ε→ 0

since tAlg ≥ D.

Hence, Alg cannot be better than 2-competitive.

c) Let Alg be a randomised algorithm that powers down at time 2
3D with probability 1

2 and
at time D otherwise. Let CAlg be a random variable for the cost incurred by the algorithm.
We again consider an arbitrary idle period of length T . We distinguish three cases:

• T < 2
3D: The energy consumption of both algorithms is cAlg = cOpt = T , hence

c = T/T = 1 < 2.



• 2
3D ≤ T < D: The expected energy consumption of Alg is

E[CAlg] =
1

2

(
2

3
D +D

)
+

1

2
T =

5

6
D +

1

2
T

and further cOpt = T . Hence we get

c =
5
6D + 1

2T

T
=

1

2
+

5

6
· D
T
≤ 1

2
+

5

6
· D2

3D
=

1

2
+

5

4
=

7

4
< 2 .

• T ≥ D: We have for the expected energy consumption of Alg

E[CAlg] =
1

2

(
2

3
D +D

)
+

1

2
(D +D) =

5

6
D +D =

11

6
D

and further cOpt = D. Hence we get

c =
11
6 D

D
=

11

6
< 2 .

Hence, the randomised algorithm is 11
6 -competitive which is better than any deterministic

algorithm.

Note: This result, however, is not optimal yet. The best randomised algorithm uses a con-
tinuous probability distribution for the shutdown time and thereby achieves a competitive
ratio of e/(e− 1) ≈ 1.58.

PhD-Scheduling [Exam]

a) (i) SmallLoad distributes the tasks as follows:

PhD student 1: 2 4 7

PhD student 2: 5 4

Opt uses the following distribution (or another one with the same cost):

PhD student 1: 2 5 3

PhD student 2: 4 7

SmallLoad thus distributes the tasks with cost Alg(σ) = 13 while Opt incurs a
cost of Opt(σ) = 11. Hence,

ρ(σ) =
Alg(σ)

Opt(σ)
=

13

11
.

(ii) The following sequence results in a larger competitive ratio: σ = 1, 1, 2. We have
Alg(σ) = 3 and Opt(σ) = 2 and thus

ρ(σ) =
Alg(σ)

Opt(σ)
=

3

2
.

(iii) See b).

(iv) No, finding the optimal solution offline corresponds to solving the Partition-problem,
which is NP-complete, thus presumably no efficient algorithm exists for the problem.

b) We first show a lower bound of (2− 1
m ) on the competitive ratio of SmallLoad. To this

end, we choose an input sequence that consists of m(m− 1) tasks of size 1 concluded with
a task of size m, i.e. σ = 1, . . . , 1︸ ︷︷ ︸

m(m−1)

,m. After assigning the first m(m−1) tasks, SmallLoad

2



has assigned m− 1 units to each of the m PhD students. The last task of size m incurs a
load of 2m− 1 for the student to whom it is assigned.

The optimal algorithm assigns the first m(m− 1) taks to only m− 1 students and the last
(heavy) task to the remaining student. This results in a maximal load of m and we get the
following lower bound for the competitive ratio:

c ≥ Alg(σ)

Opt(σ)
=

2m− 1

m
= 2− 1

m

Now we shall show a matching upper bound for the competitive ratio. Let σ = (e1, e2, . . .)
be an arbitrary input sequence. Without loss of generality, we assume s1 to be the student
with the maximal load for σ. Furthermore, let w be the effort of the last task T assigned
s1 and E the load of s1 before assigning its last task. The load of all other students must
be at least E since s1 was the student with minimal load when he was assigned task T
(otherwise another student would have received T ). Hence, the sum of the loads of all
students is at least m · E + w and hence

Opt(σ) ≥ m · E + w

m
= E +

w

m
.

Using Opt(σ) ≥ w, we get

Alg(σ) = w + E

≤ w + Opt(σ)− w

m

= Opt(σ) +

(
1− 1

m

)
w

≤ Opt(σ) +

(
1− 1

m

)
Opt(σ)

=

(
2− 1

m

)
Opt(σ)

3


