Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Discrete Event Systems

Solution to Exercise Sheet 13

1 Power-Down Mechanisms

As mentioned in the hint, we only focus on a single idle period because if we know that our algorithm is c-competitive for any idle period, we also know that it is c-competitive for the complete busy sequence.
a) Analogously to the 2-competitive ski-rental online algorithm, we consider an algorithm ALG that powers down after D time units. To see that AlG is 2-competitive, we distinguish two cases for the length of the current idle period T :

- $T<D$: The energy consumed by both algorithms is $c_{\mathrm{ALG}}=c_{\mathrm{OPT}}=T$, hence the competitive ratio is $c=T / T=1$.
- $T \geq D$: We have $c_{\mathrm{ALG}}=D+D$ since ALG waits D time units and then powers-down and $c_{\text {Opt }}=D$ because Opt powers down immediately. Hence we get

$$
c=\frac{2 D}{D}=2
$$

b) Let AlG be any deterministic power down algorithm. Then the time $t_{\text {AlG }}$ after which it powers down in an idle period is known in advance. The "worst" idle period ends immediately after Alg has powered down, that is we have $T=t_{\text {AlG }}+\varepsilon$. Again, we distinguish two cases with respect to the time $t_{\text {ALG }}$ when ALG powers down.

- $t_{\mathrm{ALG}}<D$: We have $c_{\mathrm{ALG}}=t_{\mathrm{ALG}}+D$ and $c_{\mathrm{OpT}}=t_{\mathrm{ALG}}+\varepsilon$, hence

$$
c=\frac{t_{\mathrm{ALG}}+D}{t_{\mathrm{ALG}}+\varepsilon}=1+\frac{D-\varepsilon}{t_{\mathrm{ALG}}+\varepsilon}>2 \quad \text { for } \varepsilon \rightarrow 0
$$

since $t_{\mathrm{ALG}}<D$.

- $t_{\mathrm{ALG}} \geq D:$ We have $c_{\mathrm{ALG}}=t_{\mathrm{ALG}}+D$ again and $c_{\mathrm{OPT}}=D$, hence

$$
c=\frac{t_{\mathrm{ALG}}+D}{D}=1+\frac{t_{\mathrm{ALG}}}{D} \geq 2 \quad \text { for } \varepsilon \rightarrow 0
$$

since $t_{\text {ALG }} \geq D$.
Hence, Alg cannot be better than 2-competitive.
c) Let Alg be a randomised algorithm that powers down at time $\frac{2}{3} D$ with probability $\frac{1}{2}$ and at time D otherwise. Let $C_{\text {ALG }}$ be a random variable for the cost incurred by the algorithm. We again consider an arbitrary idle period of length T. We distinguish three cases:

- $T<\frac{2}{3} D$: The energy consumption of both algorithms is $c_{\mathrm{ALG}}=c_{\mathrm{OPT}}=T$, hence $c=T / T=1<2$.
- $\frac{2}{3} D \leq T<D$: The expected energy consumption of ALG is

$$
\mathbf{E}\left[C_{\mathrm{ALG}}\right]=\frac{1}{2}\left(\frac{2}{3} D+D\right)+\frac{1}{2} T=\frac{5}{6} D+\frac{1}{2} T
$$

and further $c_{\mathrm{Opt}}=T$. Hence we get

$$
c=\frac{\frac{5}{6} D+\frac{1}{2} T}{T}=\frac{1}{2}+\frac{5}{6} \cdot \frac{D}{T} \leq \frac{1}{2}+\frac{5}{6} \cdot \frac{D}{\frac{2}{3} D}=\frac{1}{2}+\frac{5}{4}=\frac{7}{4}<2 .
$$

- $T \geq D$: We have for the expected energy consumption of ALG

$$
\mathbf{E}\left[C_{\mathrm{ALG}}\right]=\frac{1}{2}\left(\frac{2}{3} D+D\right)+\frac{1}{2}(D+D)=\frac{5}{6} D+D=\frac{11}{6} D
$$

and further $c_{\mathrm{Opt}}=D$. Hence we get

$$
c=\frac{\frac{11}{6} D}{D}=\frac{11}{6}<2 .
$$

Hence, the randomised algorithm is $\frac{11}{6}$-competitive which is better than any deterministic algorithm.

Note: This result, however, is not optimal yet. The best randomised algorithm uses a continuous probability distribution for the shutdown time and thereby achieves a competitive ratio of $e /(e-1) \approx 1.58$.

PhD-Scheduling [Exam]

a) (i) SmallLoad distributes the tasks as follows:

PhD student 1:
PhD student 2:

Opt uses the following distribution (or another one with the same cost):
PhD student 1:

PhD student 2:
SmallLoad thus distributes the tasks with cost $\operatorname{AlG}(\sigma)=13$ while Opt incurs a cost of $\operatorname{Opt}(\sigma)=11$. Hence,

$$
\rho(\sigma)=\frac{\operatorname{ALG}(\sigma)}{\operatorname{OPT}(\sigma)}=\frac{13}{11}
$$

(ii) The following sequence results in a larger competitive ratio: $\sigma=1,1,2$. We have $\operatorname{AlG}(\sigma)=3$ and $\operatorname{Opt}(\sigma)=2$ and thus

$$
\rho(\sigma)=\frac{\operatorname{ALG}(\sigma)}{\operatorname{OPT}(\sigma)}=\frac{3}{2} .
$$

(iii) See b).
(iv) No, finding the optimal solution offline corresponds to solving the Partition-problem, which is NP-complete, thus presumably no efficient algorithm exists for the problem.
b) We first show a lower bound of $\left(2-\frac{1}{m}\right)$ on the competitive ratio of SmallLoad. To this end, we choose an input sequence that consists of $m(m-1)$ tasks of size 1 concluded with a task of size m, i.e. $\sigma=\underbrace{1, \ldots, 1}_{m(m-1)}, m$. After assigning the first $m(m-1)$ tasks, SmallLoad
has assigned $m-1$ units to each of the $m \mathrm{PhD}$ students. The last task of size m incurs a load of $2 m-1$ for the student to whom it is assigned.
The optimal algorithm assigns the first $m(m-1)$ taks to only $m-1$ students and the last (heavy) task to the remaining student. This results in a maximal load of m and we get the following lower bound for the competitive ratio:

$$
c \geq \frac{\operatorname{ALG}(\sigma)}{\operatorname{OPT}(\sigma)}=\frac{2 m-1}{m}=2-\frac{1}{m}
$$

Now we shall show a matching upper bound for the competitive ratio. Let $\sigma=\left(e_{1}, e_{2}, \ldots\right)$ be an arbitrary input sequence. Without loss of generality, we assume s_{1} to be the student with the maximal load for σ. Furthermore, let w be the effort of the last task T assigned s_{1} and E the load of s_{1} before assigning its last task. The load of all other students must be at least E since s_{1} was the student with minimal load when he was assigned task T (otherwise another student would have received T). Hence, the sum of the loads of all students is at least $m \cdot E+w$ and hence

$$
\operatorname{Opt}(\sigma) \geq \frac{m \cdot E+w}{m}=E+\frac{w}{m} .
$$

Using $\operatorname{Opt}(\sigma) \geq w$, we get

$$
\begin{aligned}
\operatorname{ALG}(\sigma) & =w+E \\
& \leq w+\operatorname{Opt}(\sigma)-\frac{w}{m} \\
& =\operatorname{Opt}(\sigma)+\left(1-\frac{1}{m}\right) w \\
& \leq \operatorname{Opt}(\sigma)+\left(1-\frac{1}{m}\right) \operatorname{Opt}(\sigma) \\
& =\left(2-\frac{1}{m}\right) \operatorname{Opt}(\sigma)
\end{aligned}
$$

