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1 Colour Blindness

a) The number of colour blind people X in a sample of 100 is binomially distributed where
each person is colour blind with probability p = 0.02. Hence we have

Pr[X = k] =

(
100

k

)
pk(1 − p)100−k .

The probability that at most one person out of 100 is colour blind is given by

Pr[X ≤ 1] = Pr[X = 0] + Pr[X = 1]

=

(
100

0

)
p0(1 − p)100 +

(
100

1

)
p1(1 − p)100−1

≈ 0.403

If we assume X to be Poisson-distributed (see b)), we get

Pr[X ≤ 1] ≈ 0.406 .

b) Since the sample size n is large and the probability for someone being colour blind is small,
we can estimate the distribution of colour blind people with the Poisson distribution.

The Poisson distribution

The Poisson distribution is a discrete probability distribution which is applied often
to approximate the binomial distribution for large number n of repetitions and small
success probability p of the underlying Bernoulli experiments. According to two fre-
quently used rules of thumb, this approximation is good if n ≥ 20 and p ≤ 0.05, or if
n ≥ 100 and np ≤ 10.
The Poisson distribution is often used to estimate the probability of a given number
of events occurring in a fixed interval of time and/or space if these events occur with a
known average rate and independently of the time since the last event. The parameter
λ = np of the distribution is the expected number of occurrences in the interval.

Pr[X = x] =
λx

x!
e−λ

Since we expect the sample size n to be larger than 20 and we have p = 0.02, we can assume
the number X of colour blind persons in a sample of n persons to be Poisson-distributed



with parameter λ = np = n/50. The probability that at least one person is colour blind in
a sample of size n is now given by

Pr[X ≥ 1] = 1 − Pr[X = 0]

= 1 − e−λ · λ
0

0!

= 1 − e−n/50 .

Solving the inequality Pr[X ≥ 1] ≥ 90% for n yields n ≥ 116. Hence, in a sample of 116
persons we have at least one colour blind person with probability 90%.

2 Gloriabar

a) You might be tempted to model this situation by a queue with a bounded number of
states, because the maximal number of persons in the line is bounded by 540. However,
the situation can also be modeled by an infinite M/M/1 queue without losing too much
accuracy; the parameter ρ will not be too large, such that the probability to reach the
state in which 540 persons are standing in the queue at once is extremely small anyway.
The modeling by an infinite M/M/1 queue conveniently allows us to apply Little’s Law
(slides 76 ff.) and therefore, we can use the formulae for the response and waiting time
from slide 79:

We have an arrival rate of λ = 540/(90 · 60) = 1/10 (persons per second), and µ = 1/9
(persons per second). Thus ρ = λ/µ = 9/10. Applying Little’s Law and the mentioned
formulae yields: The expected waiting time is W = ρ/(µ− λ) = 81 seconds; the expected
time until the student has paid for her menu is given by T = 1/(µ− λ) = 90 seconds.

b) We use the formula for the expected number of jobs in the queue from slide 79 and obtain
queue length of NQ = ρ2/(1 − ρ) = 8.1.

c) We require that T = 1/(µ − 0.1) = 90/2. Thus, µ = 11/90, i.e., instead of 9 secs, the
service time should be 90/11 ≈ 8.2 secs.

3 Beachvolleyball

a) We know that the minimum of i independent and exponentially distributed (with parameter
λ) random variables is an exponentially distributed random variable with parameter iλ.
Thus, we have the following birth-death-process:

0 1 2 ... n− 1 n

nλ

µ

(n− 1)λ

2µ

λ

nµ

(n− 2)λ 2λ

3µ (n− 1)µ

b) Let πi be the probability of state i in the equilibrium. From slide 87, we know that

πi = π0 ·
i−1∏
j=0

λj
µj+1

and thus

πi = π0 ·
λ0 · λ1 · · · · λi−1

µ1 · µ2 · · · · µi
.
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Applying this formula to our process yields

πi = π0 ·
n(n− 1) · · · · · (n− i+ 1) · λi

1 · 2 · · · · · i · µi
= π0 ·

(
n

i

)
· ρi (1)

where ρ := λ
µ . We know that the sum of all probabilities equals 1, so we have

n∑
i=0

πi = π0

n∑
i=0

(
n

i

)
ρi = 1

Using the given formula for the binomial series

n∑
i=0

(
n

i

)
xi = (1 + x)n

we obtain
π0(1 + ρ)n = 1 .

Finally, we obtain

πi =

(
n
i

)
ρi

(1 + ρ)n
.

c) (i) It is ρ = 3/9 = 1/3. We calculate the probability that there are less than two fit
players:

π0 + π1 =
1

(1 + ρ)n
·
(

1 +

(
n

1

)
· ρ1
)

=

(
3

4

)5

·
(

1 +
5

3

)
=

35

210
· 8

3

=
34

27
≈ 0.63

Thus, the Disco team cannot participate in the tournament with probability 0.63.

(ii) Now, ρ = 2/4 = 0.5. Again, we calculate π0 + π1:

π0 + π1 =
1

(1 + ρ)n
·
(

1 +

(
n

1

)
· ρ1
)

=
1

1.55
· (1 + 0.5 · 5)

=
25 · 3.5

35
≈ 0.46

Hence, the probability that the Disco team cannot participate is 0.46!

(iii) In general, if ρ ≥ 1, an M/M/1 queue might grow infinitely and therefore doesn’t
have a stationary distribution. This cannot happen in this birth-and-death process,
though, because there is only a bounded number of states. Hence, the process has a
stationary distribution even for ρ ≥ 1.

4 Theory of Ice Cream Vending

The situation can be described by a classic M/M/2 system. According to slide 90, there is an
equilibrium iff

ρ = λ/(2µ) < 1 .
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For the stationary distribution, it holds that

π0 =
1(∑m−1

k=0
(ρm)k

k!

)
+ (ρm)m

m!(1−ρ)

=
1

(2ρ)0

0! + (2ρ)1

1! + (2ρ)2

2!(1−ρ)

=
1

1 + 2ρ+ 4ρ2

(2(1−ρ))

=
1

1 + 2ρ+ 4ρ2

2(1−ρ)

=
1

2(1−ρ)+4ρ(1−ρ)+4ρ2

2(1−ρ)

=
2(1 − ρ)

2 − 2ρ+ 4ρ− 4ρ2 + 4ρ2

=
2(1 − ρ)

2 + 2ρ

=
1 − ρ

1 + ρ
.
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