Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
HS 2012
Prof. C. Stamm / K.-T. Foerster, T. Langner, J. Seidel

Discrete Event Systems

Exercise Sheet 3

1 Finite Automata and Regular Languages [Exam]

Consider the NFA A in Figure 1 and further assume $\Sigma=\{0,1\}$.

Figure 1: NFA A.
a) Transform the NFA into an equivalent DFA using the powerset construction of the lecture. (Hint: Only construct states which are necessary!)
b) Give a regular expression for the language accepted by the automaton A ?

2 Pumping Lemma [Exam]

Are the following languages regular? Prove your claims!
a) $L_{1}=\left\{0^{a} 1^{b} 0^{c} 1^{d} \mid a, b, c, d \geq 0\right.$ and $a=1, b=2$ and $\left.c=d\right\}$
b) $L_{2}=\left\{0^{a} 1^{b} 0^{c} 1^{d} \mid a, b, c, d \geq 0\right.$ and if $a=1$ and $b=2$ then $\left.c=d\right\}$

3 Transforming Automata [Exam]

Consider the DFA in Figure 2 over the alphabet $\Sigma=\{0,1\}$ accepting the language L. Let $\Phi(L)$ be defined as

$$
\Phi(L):=\left\{w \in \Sigma^{*}\left|\exists x \in \Sigma^{*},|x|=|w| \text { and } w x \in L\right\}\right.
$$

In other words, $\Phi(L)$ is the set of the front halves of all words in L.

Figure 2: DFA B.
a) Give a regular expression for the language L accepted by the automaton B. If you like, you can do this by ripping out states as presented in the lecture (slide $1 / 84 \mathrm{ff}$.).
b) Construct a DFA which accepts a word w if and only if $w \in \Phi(L)$.

