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Overview

Introduction
Strong Consistency
— Crash Failures: Primary Copy, Commit Protocols
— Crash-Recovery Failures: Paxos, Chubby
— Byzantine Failures: PBFT, Zyzzyva
CAP: Consistency or Availability?
Weak Consistency
— Consistency Models
— Peer-to-Peer, Distributed Storage, or Cloud Computing
— Selfishness & Glimpse into Game Theory

Computation: MapReduce

Computability vs. Efficiency

¢ Inthe last part, we studied computability
— When is it possible to guarantee consensus?
— What kind of failures can be tolerated?
— How many failures can be tolerated?

Worst-case

scenarios!

¢ In this part, we consider practical solutions
— Simple approaches that work well in practice
— Focus on efficiency
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Fault-Tolerance in Practice

e Fault-Tolerance is achieved through replication

ﬁated
data

= _;

Replication is Expensive

¢ Reading a value is simple = Just query any server
e Writing is more work = Inform all servers about the update
— What if some servers are not available?
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Primary Copy

e Can we reduce the load on the clients?
* Yes! Write only to one server (the primary copy), and let primary copy

distribute the update
— This way, the client only sends one message in order to read and write
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Problem with Primary Copy

¢ If the clients can only send read requests to the primary copy, the system
stalls if the primary copy fails

¢ However, if the clients can also send read requests to the other servers,
the clients may not have a consistent view

State Machine Replication?

¢ The state of each server has to be updated in the same way

¢ This ensures that all servers are in the same state whenever all updates
have been carried out!

L /
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e The servers have to agree on each update

- Consensus has to be reached for each update!

Theory Practice

Impossible to guarantee consensus using a
deterministic algorithm in asynchronous
systems even if only one node is faulty

Consensus is required to guarantee
consistency among different replicas

From Theory to Practice

Intheory, |
\ and

e So, how do we go from theory to practice...? °'°“i:= ore the
me.
n practice,

. . . oy are
e Communication is often not synchronous, but

not completely asynchronous either
— There may be reasonable bounds on the message delays

— Practical systems often use message passing. The machines wait for the
response from another machine and abort/retry after time-out

— Failures: It depends on the application/system what kind of failures have to
be handled...

Depends on the bounds

on the message delays!

e Thatis...
— Real-world protocols also make assumptions about the system
— These assumptions allow us to circumvent the lower bounds!




System
e Storage System * Processes
— Servers: 2...Millions — Clients, often millions
— Store data and react to client — Read and write/modify data
request

Consistency Models (Client View)

e Interface that describes the system behavior (abstract away
implementation details)

e |f clients read/write data, they expect the behavior to be the same as for
a single storage cell.

Let’s Formalize these Ideas

e We have memory that supports 3 types of operations:
— write(u := v): write value v to the memory location at address u
— read(u): Read value stored at address u and return it
— snapshot(): return a map that contains all address-value pairs

® Each operation has a start-time T, and return-time T, (time it returns to
the invoking client). The duration is given by T, —T..

start-time read(u)

write(u := 3)

return-time
A X Y B

replica

Motivation
:I write(u:=1)
:l write(u:=2)

:l write(u:=3)

i
i
i
[[] write(u:=4)
i
i
i

read(u)

:I write(u:=5)

:| write(u:=6)

:I write(u:=7)

ytime




Executions

e We look at executions E that define
the (partial) order in which
processes invoke operations.

e Real-time partial order of an
execution <.

— p <,q means that duration of
operation p occurs entirely before
duration of g (i.e. p returns before

e Client partial order <_:
— p<.gmeansp and g occur at the

same client, and that p returns

before g is invoked.

the invocation of g in real time).

Strong Consistency: Linearizability

¢ Avreplicated system is called linearizable if it behaves exactly as a single-
site (unreplicated) system.

| Definition ]
Execution E is linearizable if there exists a sequence H such that:

1) H contains exactly the same operations as E, each paired
with the return value received in E

2) The total order of operations in H is compatible with the
real-time partial order <,

3) His alegal history of the data type that is replicated

Example: Linearizable Execution

read(u,)

5

write(u, := 7)

snapshot()

(ug:0, uy:5,
u,:7, us:0)

=
[Q
=

>

— 1
1
— 1

] write(u, := 5)

read(u,)
Jo

i write(us := 2)

Valid sequence H:

1.) write(u, :=5)
2.)read(u;) > 5
3.)read(u,) >0
4.) write(u, :=7)
5.) snapshot() >

(ug: 0, uy: 5, u,:7, us:0)
6.) write(u, :=2)

For this example, this is the
only valid H. In general there
might be several sequences
H that fullfil all required
properties.

Strong Consistency: Sequential Consistency

¢ Orders at different locations are disregarded if it cannot be determined by
any observer within the system.

¢ l.e., a system provides sequential consistency if every node of the system
sees the (write) operations on the same memory address in the same
order, although the order may be different from the order as defined by
real time (as seen by a hypothetical external observer or global clock).

| Definition ]
Execution E is sequentially consistent if there exists a sequence H such that:

1)

2)

3)

H contains exactly the same operations as E, each paired with the
return value received in E

The total order of operations in H is compatible with the client partial
order <,

H is a legal history of the data type that is replicated




Example: Sequentially Consistent

¢] write(u,
read(u,) /
| o
write(u, = 7) [Q <I:| (I’)ea u,
\
1 write(u;
snapshot() ¢
(ug:0, uy:5, [J>/
u,:7, u:0)
A X Y B

:=5)

Valid sequence H:

1.) write(u, :=5)
2.)read(u,) > 5
3.)read(u,) > 0
4.) write(u, :=7)
5.) snapshot() -
=2) (ug:0, uy:5, uy:7, us:0)
6.) write(u := 2)

Is Every Execution Sequentially Consistent?

write(u, :=7)

i write(u, := 5)

write(ug = 8)[

0 write(us := 2)

snapshot,q () |: )
(ug:8, uy:0) (; IJ snapshot,, ()
(u,:0, us:2)
A X Y B
[ write(u, := 7) write(u, = 5) ] Circular dependencies!
l.e., there is no valid total order and thus above
[ write(ug := 8) write(u, := 2) execution is not sequentially consistent

Sequential Consistency does not Compose

write(u, :=7) O

n write(u, := 5)

write(u, := 8) [

N write(us :=2)
:U snapshot, 3()
(u,:0, uy:2)

Y B

snapshot,g () [
(ug:8, uy:0)

>
>

¢ |f we only look at data items 0
and 1, operations are
sequentially consistent

¢ If we only look at data items 2
and 3, operation are also
sequentially consistent

¢ But, as we have seen before,
the combination is not
sequentially consistent

Sequential consistency does not compose!

(this is in contrast to linearizability)

Transactions

¢ Inorder to achieve consistency, updates have to be atomic
e A write has to be an atomic transaction
— Updates are synchronized

e Either all nodes (servers) commit a transaction or all abort
¢ How do we handle transactions in asynchronous systems?

— Unpredictable messages delays!
e Moreover, any node may fail...

— Recall that this problem cannot
be solved in theory!

Long delay

Short delay




Two-Phase Commit (2PC)

e A widely used protocol is the so-called two-phase commit protocol

e Theidea is simple: There is a coordinator that coordinates the transaction
— All other nodes communicate only with the coordinator
— The coordinator communicates the final decision

Coordinator

Two-Phase Commit: Failures

¢ Fail-stop model: We assume that a failed node does not re-emerge
¢ Failures are detected (instantly)
— E.g. time-outs are used in practical systems to detect failures

e |f the coordinator fails, a new coordinator takes over (instantly)
— How can this be accomplished reliably?

New

—
Coordinator il
coordinator

Two-Phase Commit: Protocol

¢ In the first phase, the coordinator asks if all nodes are ready to commit

¢ Inthe second phase, the coordinator sends the decision (commit/abort)
— The coordinator aborts if at least one node said no

— —
e Coordinator ., | Coordinator
. |
read L w‘ abort /L w
LA I AN
= ready, ready w~lC ~ abort abort =
yes no ok ack

| N )

Two-Phase Commit: Protocol

Phase 1:
Coordinator sends ready to all nodes

If a node receives ready from the coordinator:
If it is ready to commit

Send yes to coordinator
else

Send no to coordinator




Two-Phase Commit: Protocol

Phase 2:

If the coordinator receives only yes messages:
Send commit to all nodes

else
Send abort to all nodes

If a node receives commit from the coordinator:
Commit the transaction

else (abort received)
Abort the transaction

Send ack to coordinator

Once the coordinator received all ack messages:
It completes the transaction by committing or aborting itself

Two-Phase Commit: Analysis

e 2PC obviously works if there are no failures
e [fanode thatis not the coordinator fails, it still works
— If the node fails before sending yes/no, the coordinator can either ignore it or
safely abort the transaction
— If the node fails before sending ack, the coordinator can still commit/abort
depending on the vote in the first phase

Two-Phase Commit: Analysis

e What happens if the coordinator fails?

¢ As we said before, this is (somehow) detected and a new coordinator

takes over ] "
This safety mechanism

is not a part of 2PC...
¢ How does the new coordinator proceed?

— It must ask the other nodes if a node has already received a commit

— A node that has received a commit replies yes,
otherwise it sends no and promises not to accept
a commit that may arrive from the old coordinator

— If some node replied yes, the new
coordinator broadcasts commit

.

e This works if there is only one failure

e Does 2PC still work with multiple failures...? N
.

X e
JAN.
e

o N

A

Two-Phase Commit: Multiple Failures

¢ Aslong as the coordinator is alive, multiple failures are no problem
— The same arguments as for one failure apply
¢ What if the coordinator and another node crashes?

Aborted! Committed!

commit or
abort???
O

. O

x yes q
. = commit or -
yes abort??? yes
i\_ .00

The nodes cannot commit! The nodes cannot abort!

yes




Two-Phase Commit: Multiple Failures

e What is the problem?

— Some nodes may be ready to commit while others have already committed or
aborted

— If the coordinator crashes, the other nodes are not informed!
e How can we solve this problem?

Committed/Aborted!

The remaining
commit/ .

.
abort 1 nodes cannot make
0

a decision!

M-.\

N

Three-Phase Commit

¢ Solution: Add another phase to the protocol!
— The new phase precedes the commit phase
— The goal is to inform all nodes that all are ready to commit (or not)

— At the end of this phase, every node knows whether or not all nodes want to
commit before any node has actually committed or aborted!

This solves the
problem of 2PC!

e This protocol is called the three-phase commit (3PC) protocol

Three-Phase Commit: Protocol

¢ Inthe new (second) phase, the coordinator sends prepare (to commit)
messages to all nodes

Coordinator Coordinator Coordinator
reidy' pre pare commit .
s ready A prepare sk Tmn
quead N! BCk Nq comymit ackC ™ ==
pre i N
<« ; < ack = ackC &,\q
rea
Y yes prepare ack ¥ commit\ 5ckc
‘ M .

acknowledge
commit

Three-Phase Commit: Protocol

Phase 1:
Coordinator sends ready to all nodes

If a node receives ready from the coordinator:
If it is ready to commit

Send yes to coordinator
else

Send no to coordinator

The first phase of 2PC
and 3PC are identical!




Three-Phase Commit: Protocol

Phase 2:

If the coordinator receives only yes messages:
Send prepare to all nodes

else
Send abort to all nodes

If a node receives prepare from the coordinator:
Prepare to commit the transaction

else (abort received)
Abort the transaction

Send ack to coordinator

This is the new phase

Three-Phase Commit: Protocol

Phase 3:

Once the coordinator received all ack messages:
If the coordinator sent abort in Phase 2

The coordinator aborts the transaction as well
else (it sent prepare)

Send commit to all nodes

If a node receives commit from the coordinator:
Commit the transaction
Send ackCommit to coordinator

Once the coordinator received all ackCommit messages:
It completes the transaction by committing itself

Three-Phase Commit: Analysis

¢ All non-faulty nodes either commit or abort

— If the coordinator doesn’t fail, 3PC is correct because the coordinator lets all
nodes either commit or abort

— Termination can also be guaranteed: If some node fails before sending
yes/no, the coordinator can safely abort. If some node fails after the
coordinator sent prepare, the coordinator can still enforce a commit because
all nodes must have sent yes

— If only the coordinator fails, we again don’t have a problem because the new
coordinator can restart the protocol

— Assume that the coordinator and some other nodes failed and that some
node committed. The coordinator must have received ack messages from all
nodes = All nodes must have received a prepare message. The new
coordinator can thus enforce a commit. If a node aborted, no node can have
received a prepare message. Thus, the new coordinator can safely abort the
transaction

Three-Phase Commit: Analysis

¢ Although the 3PC protocol still works if multiple nodes fail, it still has
severe shortcomings
— 3PCstill depends on a single coordinator. What if some but not all nodes
assume that the coordinator failed?
- The nodes first have to agree on whether the coordinator crashed or not!

In order to solve consensus, you
first need to solve consensus...

— Transient failures: What if a failed coordinator comes back to life? Suddenly,
there is more than one coordinator!

e Still, 3PC and 2PC are used successfully in practice

¢ However, it would be nice to have a practical protocol that does not
depend on a single coordinator
— and that can handle temporary failures!




Paxos

e Historical note
— Inthe 1980s, a fault-tolerant distributed file system called “Echo” was built

— According to the developers, it achieves “consensus” despite any number of
failures as long as a majority of nodes is alive

— The steps of the algorithm are simple if there are no failures and quite
complicated if there are failures

— Leslie Lamport thought that it is impossible to provide guarantees in this
model and tried to prove it

— Instead of finding a proof, he found a much simpler algorithm that works:
The Paxos algorithm

e Paxos is an algorithm that does not rely on a coordinator
— Communication is still asynchronous
— All nodes may crash at any time and they may also recover

fail-recover model

Paxos: Majority Sets

e Paxos is a two-phase protocol, but more resilient than 2PC

e Why is it more resilient?
— There is no coordinator. A majority of the nodes is asked if a certain value can
be accepted
— A majority set is enough because the intersection of two majority sets is not
empty = If a majority chooses one value, no majority can choose another

value! -
Majority set

“ Majority set

Paxos: Majority Sets

e Majority sets are a good idea

e But, what happens if several nodes compete for a majority?
— Conflicts have to be resolved
— Some nodes may have to change their decision

-~

No majority... - o /

N _
-~ / - <
Eq—_’j‘ i“/\ No majority...

No majority... q Nq

Paxos: Roles

2 There are three roles ]

e Each node has one or more roles:

e Proposer
— A proposer is a node that proposes a certain value for acceptance
— Of course, there can be any number of proposers at the same time
e Acceptor
— An acceptor is a node that receives a proposal from a proposer
— An acceptor can either accept or reject a proposal
e Learner
— Alearner is a node that is not involved in the decision process
— The learners must learn the final result from the proposers/acceptors




Paxos: Proposal

e A proposal (x,n) consists of the proposed value x and a proposal number n

e Whenever a proposer issues a new proposal, it chooses a larger (unique)
proposal number

e An acceptor accepts a proposal (x,n) if n is larger than any proposal
number it has ever heard "
Give preference to larger 1
proposal numbers!

e An acceptor can accept any number of proposals
— An accepted proposal may not necessarily be chosen

— The value of a chosen proposal is the chosen value
e An acceptor can even choose any number of proposals
— However, if two proposals (x,n) and (y,m) are chosen,

thenx =y
Consensus: Only one
value can be chosen!

Paxos: Prepare

¢ Before a node sends propose(x,n), it sends prepare(x,n)
— This message is used to indicate that the node wants to propose (x,n)

e If nislarger than all received request numbers, an acceptor returns the
accepted proposal (y,m) with the largest request number m

— Ifit never accepted a proposal, the acceptor returns (@,0) Note that m < n!

— The proposer learns about accepted proposals!

prepare(x,n) iq 5‘ N acc(y,m) = Nq "
|
=] - = M g N B
paap = )
e ' N

prepare(x,n)

acc(z,l) q
<" Majority set <% Majority set

[ This is the first phase! ]

Paxos: Propose

e If the proposer receives all replies, it sends a proposal

e However, it only proposes its own value, if it only received acc(@,0),
otherwise it adopts the value y in the proposal with the largest request
number m

— The proposal still contains its sequence number n, i.e., (y,n) is proposed

¢ If the proposer receives all acknowledgements ack(y,n), the proposal is

chosen

propose(y,n)

hq N‘ . C(f}llg;)e:l ack(y,n) q “
iw)ﬁ Dj 1 ack(y,n) Hq \l

~Propose(y,n) Nq ack(y,n “
\“ “ a:k(y*; Nq

propose(y,n) q
<" Majority set <%  Majority set

[This is the second phase! ]

Paxos: Algorithm of Proposer

Proposer wants to propose (x,n):

Send prepare(x,n) to a majority of the nodes
if a majority of the nodes replies then
Let (y,m) be the received proposal with the largest request number

if m =0 then (No acceptor ever accepted another proposal)
Send propose(x,n) to the same set of acceptors
else

Send propose(y,n) to the same set of acceptors
if a majority of the nodes replies with ack(x,n) respectively ack(y,n)

The proposal is chosen! The value of the proposal
is also chosen!

After a time-out, the proposer gives
up and may send a new proposal




Paxos: Algorithm of Acceptor

Why persistently?
Initialize and store persistently:

/[ Largest request number ever received }
=0

max *
(XjasrMast) == (Q),O)% Last accepted proposal }

Acceptor receives prepare (x,n):

if n>n,_ ., then
Noax i= N
Send acc(X,,q,N,,5) to the proposer

Acceptor receives proposal (x,n):

if n=n_,, then
Xjast += X
Nast =N
Send ack(x,n) to the proposer

Paxos: Spreading the Decision

After a proposal is chosen, only the proposer knows about it!

How do the others (learners) get informed? (:10") iSI ‘

chosen!

The proposer could inform all learners directly ii -7
— Only n-1 messages are required “Q‘ i
— If the proposer fails, the learners are not informed - 1

(directly)... \ S

The acceptors could broadcast every time they :q

accept a proposal
— Much more fault-tolerant Accepted ‘q
— Many accepted proposals may not be chosen... bon)! - <
— Moreover, choosing a value costs O(n?) messages q -

without failures! ~ — \'
. . . e & -

Something in the middle? \ —

— The proposer informs b nodes and lets them o) e
broadcast the decision e

(W

[ Trade-off: fault-tolerance vs. message complexity

Paxos: Agreement

Lemma
If a proposal (x,n) is chosen, then for every issued
proposal (y,n’) for which n’ > n it holds that x =y

Proof:

Assume that there are proposals (y,n’) for whichn’>nand x # y.
Consider the proposal with the smallest proposal number n’

Consider the non-empty intersection S of the two sets of nodes that
function as the acceptors for the two proposals

Proposal (x,n) has been accepted = Since n’ > n, the nodes in S must have
received prepare(y,n’) after (x,n) has been accepted

This implies that the proposer of (y,n’) would also propose the value x
unless another acceptor has accepted a proposal (z,n*),z#xand n<n*<
n’. However, this means that some node must have proposed (z,n*), a
contradiction because n* < n” and we said that n’ is the smallest proposal
number!

Paxos: Theorem

Theorem
If a value is chosen, all nodes choose this value

Proof:

Once a proposal (x,n) is chosen, each proposal (y,n’) that is sent
afterwards has the same proposal value, i.e., x = y according to the lemma
on the previous slide

Since every subsequent proposal has the same value x, every proposal
that is accepted after (x,n) has been chosen has the same value x

Since no other value than x is accepted, no other value can be chosen!




Paxos: Wait a Minute...

e Paxos is great!

e Itis asimple, deterministic algorithm that works in
asynchronous systems and tolerates f < n/2 failures

¢ Is this really possible...?

| Theorem I
A deterministic algorithm cannot guarantee

consensus in asynchronous systems even if
there is just one faulty node

o\
=

\E

e Does Paxos contradict this lower bound...?

Paxos: No Liveness Guarantee

¢ The answer is no! Paxos only guarantees that if a value is chosen, the other
nodes can only choose the same value

e |t does not guarantee that a value is chosen! time
‘A' prepare(x,1) i-i
‘\1 <7

acc(,0) prepare(y,2) .

fl}
L.
)
) N

acc(@,0)

iq propose(x,1)

Time-out! -~ i- !q
iq prepare(x,3) Sl i
- -

acc(@,0) .
propose(y,2) Nq
ek

prepare(y,4) i.
M

Time-out!

()
=
=/ ) &
4

()

acc(®,0)

Paxos: Agreement vs. Termination

¢ Inasynchronous systems, a deterministic consensus algorithm cannot have
both, guaranteed termination and correctness

e Paxos is always correct. Consequently, it cannot guarantee that the
protocol terminates in a certain number of rounds

Termination is sacrificed
for correctness...

¢ Although Paxos may not terminate in theory, it is quite efficient in practice
using a few optimizations ,

How can Paxos
be optimized?

Paxos in Practice

e There are ways to optimize Paxos by dealing with some practical issues

— For example, the nodes may wait for a long time until they decide to try to
submit a new proposal

— Asimple solution: The acceptors send NAK if they do not accept a prepare
message or a proposal. A node can then abort immediately

— Note that this optimization increases the message complexity...

¢ Paxos is indeed used in practical systems!
— Yahoo!’s ZooKeeper: A management service for large distributed systems uses a
variation of Paxos to achieve consensus
— Google’s Chubby: A distributed lock service library. Chubby stores lock
information in a replicated database to achieve high availability. The database
is implemented on top of a fault-tolerant log layer based on Paxos




Paxos: Fun Facts

e Why is the algorithm called Paxos?

e Leslie Lamport described the algorithm as the solution to a
problem of the parliament on a fictitious Greek island called Paxos

e Many readers were so distracted by the description of the
activities of the legislators, they did not understand the meaning
and purpose of the algorithm. The paper was rejected

¢ Leslie Lamport refused to rewrite the paper. He later wrote that he
“was quite annoyed at how humorless everyone working in the
field seemed to be”

e After a few years, some people started to understand the
importance of the algorithm

e After eight years, Leslie Lamport submitted the paper again,
basically unaltered. It got accepted!

Quorum

Paxos used Majority sets: Can this be generalized?

Yes: It’s called Quorum

¢ Inlaw, a quorum is a the minimum number of members of a deliberative
body necessary to conduct the business of the group.

¢ Inour case: substitute “members of a deliberative body” with “any subset
of servers of a distributed system”

A Quorum does not automatically need to be a majority.
What else can you imagine? What are reasonable objectives?

Quorum: Primary Copy vs. Majority

Quorum: Primary Copy vs. Majority

How many servers need to be contacted? (Work) 1 >n/2
What'’s the load of the busiest server? (Load) 100% = 50%
How many server failures can be tolerated? (Resilience) 0 <n/2
‘..
N .
~ ~ N <
LA =M
N N M
A 3 <N




Definition: Quorum System

Definition

Definition

2/61

Definition: Load

Definition

Definition

2/62

Quorum: Grid

Vn

e Work:2yn —1

e Load: MT_l

2/63

Definitions: Fault Tolerance

Definition

Definition

2/64




Quorum: B-Grid

mini-column

/ e Suppose n = dhr and arrange the
elements in a grid with d columns

y and h - r rows. Call every group of r

rows a band and call r elements in a

column restricted to a band a mini-

- column. A quorum consists of one

mini-column in every band and one
element from each mini-column of
one band; thus, every quorum has
d + hr — 1 elements

e Resilience?

—

Quorum Systems: Overview

Work 1 >n/2 0(\/n) 0(\/n)

Load 1 12 0(1/yn) 6(1/¥n)

Resilience 0 <n/2 vn =1 0@G/n)
p

Failure Prob.* -0 -1 -0

*Assuming p constant but significantly less than %.
**B-Grid: We set d = +/n, 7 = logn

Chubby

e Chubby is a coarse-grained distributed lock service
— Coarse-grained: Locks are held for hours or even days

Chubby allows clients to synchronize activities
— E.g., synchronize access through a leader in a distributed system

— The leader is elected using Chubby: The node that gets the lock for this
service becomes the leader!

¢ Design goals are high availability and reliability
— High performance is not a major issue

e Chubby is used in many tools, services etc. at Google
— Google File System (GFS)
— BigTable (distributed database)

Chubby: System Structure

e A Chubby cell typically consists of 5 servers
— One server is the master, the others are replicas
— The clients only communicate with the master
— Clients find the master by sending master location requests to some replicas
listed in the DNS
Master
Replica

=
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Chubby: System Structure

* The master handles all read accesses
* The master also handles writes
— Copies of the updates are sent to the replicas

— Maijority of replicas must acknowledge receipt of update before master writes
its own value and updates the official database
Update!

.‘ l update

Chubby: Master Election

¢ The master remains the master for the duration of the master lease
— Before the lease expires, the master can renew it (and remain the master)
— Itis guaranteed that no new master is elected before the lease expires
— However, a new master is elected as soon as the lease expires

— This ensures that the system does not freeze (for a long time) if the master
crashed

¢ How do the servers in the Chubby cell agree on a master?
e They run (a variant of) the Paxos algorithm!

Chubby: Locks

e Locks are advisory (not mandatory)
— As usual, locks are mutually exclusive
— However, data can be read without the lock!

— Advisory locks are more efficient than mandatory locks (where any access
requires the lock): Most accesses are reads! If a mandatory lock is used and
the lock holder crashes, then all reads are stalled until the situation is
resolved

— Write permission to a resource is required to obtain a lock

Advisory: Mandatory:

/ " service
= | service Nq
lock N | > =i
holder . :Wi lock b3
read holder [ il
x read \ = LG l
= i = :
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Chubby cell

Chubby: Sessions

¢ What happens if the lock holder crashes?

¢ Client initially contacts master to establish a session
— Session: Relationship between Chubby cell and Chubby client

e Each session has an associated lease
— The master can extend the lease, but it may not revoke the lease
— Longer lease times if the load is high

¢ Periodic KeepAlive (KA) handshake to maintain relationship

— The master does not respond until the client’s previous lease is close to
expiring

master
— Then it responds with the duration of the new lease _— e 2

— The client reacts immediately and issues the next KA
¢ Ending a session ka/ reply| [ka
— The client terminates the session explicitly

— or the lease expires
lease 1
—
client lease 2




Chubby: Lease Timeout

Time when
¢ The client maintains a local lease timeout lease expires

— The client knows (roughly) when it has to hear from the master again
¢ If the local lease expires, the session is in jeopardy
e Assoon as a session is in jeopardy, the grace period (45s by default) starts

— Ifthere is a successful KeepAlive exchange before the end of the grace period,
the session is saved!

— Otherwise, the session expired

¢ This might happen if the master crashed...

Chubby: Master Failure

e The grace period can save sessions

Old master New master
lease 2

lease 1 lease 3

KA KA KA[ *\KA/ \reply

clien

lease 1 R lease 3

lease 2 grace period

jeopardy safe

¢ The client finds the new master using a master location request

e |ts first KA to the new master is denied (*) because the new master has a
new epoch number (sometimes called view number)

¢ The next KA succeeds with the new number

Chubby: Master Failure

e A master failure is detected once the master lease expires

e A new master is elected, which tries to resume exactly where the old
master left off

— Read data that the former master wrote to disk (this data is also replicated)
— Obtain state from clients

e Actions of the new master
1. It picks a new epoch number

. . We omit
— It only replies to master location requests caching in
2. It rebuilds the data structures of the old master this lecture!

— Now it also accepts KeepAlives
3. Itinforms all clients about failure - Clients flush cache
— All operations can proceed

Chubby: Locks Reloaded

e What if a lock holder crashes and its (write) request is still in transit?
— This write may undo an operation of the next lock holder!

old lock " service new lock
holder Nq\ holder
! = x:=10 —

e Heuristic I: Sequencer
— Add a sequencer (which describes the state of the lock) to the access requests

— The sequencer is a bit string that contains the name of lock, the mode
(exclusive/shared), and the lock generation number

— The client passes the sequencer to server. The server is expected to check if
the sequencer is still valid and has the appropriate mode

e Heuristic Il: Delay access

— If alock holder crashed, Chubby blocks the lock for a period called the lock
delay




Chubby: Replica Replacement

e What happens when a replica crashes?

— Ifit does not recover for a few hours, a replacement system selects a fresh
machine from a pool of machines

— Subsequently, the DNS tables are updated by replacing the IP address of the
failed replica with the new one

— The master polls the DNS periodically and eventually notices the change

DNS
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Chubby: Performance

e According to Chubby...
— Chubby performs quite well
e 90K+ clients can communicate with a single Chubby master (2 CPUs)
e System increases lease times from 12s up to 60s under heavy load
¢ Clients cache virtually everything
e Only little state has to be stored
— All data is held in RAM (but also persistently stored on disk)

Practical Byzantine Fault-Tolerance

e So far, we have only looked at systems that deal with simple (crash) failures
e We know that there are other kind of failures:

Omission of Arbitrary failures,
Crash / Fail-stop messages authenticated messages Arbitrary failures

[ » [
—» » »

Practical Byzantine Fault-Tolerance

e |sitreasonable to consider Byzantine behavior in practical systems?

e There are several reasons why clients/servers may behave “arbitrarily”
— Malfunctioning hardware
— Buggy software
— Malicious attacks

e Can we have a practical and efficient system that tolerates Byzantine
behavior...?

— We again need to solve consensus...




PBFT

e We are now going to study the Practical Byzantine Fault-Tolerant (PBFT)
system

¢ The system consists of clients that read/write data stored at n servers

e Goal

— The system can be used to implement any deterministic replicated service
with a state and some operations

— Provide reliability and availability

e Model
— Communication is asynchronous, but message delays are bounded
— Messages may be lost, duplicated or may arrive out of order

— Messages can be authenticated using digital signatures
(in order to prevent spoofing, replay, impersonation)

— At most f < n/3 of the servers are Byzantine

PBFT: Order of Operations

e State replication (repetition): If all servers start in the same state, all
operations are deterministic, and all operations are executed in the same
order, then all servers remain in the same state!

e Variable message delays may be a problem:

(alB] [ ]

Servers

Clients

PBFT: Order of Operations

e If messages are lost, some servers may not receive all updates...

(A[[[[e-- [A[B[ [[--- [B[ [T Te-- B[[JT---

Se rvers(

\__

Clients

PBFT: Basic Idea

PBFT is not as

decentralized
¢ One server is the primary as Paxos!

— The clients send signed commands to the primary

¢ Such problems can be solved by using a coordinator

— The primary assigns sequence numbers to the commands
— These sequence numbers impose an order on the commands
e The other servers are backups
— The primary forwards commands to the other servers
— Information about commands is replicated at a quorum of backups

Quorum...?

¢ Note that we assume in the following that there are
exactly n = 3f+1 servers!




PBFT: Main Algorithm

PBFT takes 5 rounds of communication

Byzantine Quorums
L]
In the first round, the client sends the command op to the primary

The following three rounds are

L]
— Pre-prepare

— Prepare

— Propose
In the fifth round, the client receives replies from the servers

— If f+1 (authenticated) replies are the same, the result is accepted
— Since there are only f Byzantine servers, at least one correct server supports

Now, a quorum is any subset of the servers of size at least 2f+1
— The intersection between any two quorums contains at least one correct

(not Byzantine) server
L]

Quorum 2
the result

Quorum 1

e The algorithm is somewhat similar to Paxos...

PBFT: Algorithm

e PBFT takes 5 rounds of communication
The main parts are the three rounds pre-prepare, prepare, and commit

PBFT: Paxos

¢ In Paxos, there is only a prepare and a propose phase
e The primary is the node issuing the proposal
¢ Inthe response phase, the clients learn the final result
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PBFT: Request Phase

¢ Inthe first round, the client sends the command op to the primary

e It also sends a timestamp ts, a client identifier c-id and a signature c-sig
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PBFT: Request Phase

¢ Why adding a timestamp?
— The timestamp ensures that a command is recorded/executed exactly once

e Why adding a signature?
— ltis not possible for another client (or a Byzantine server) to issue commands
that are accepted as commands from client ¢
— The system also performs access control: If a client c is allowed to write a

variable x but ¢’ is not, ¢’ cannot issue a write command by pretending to be
client c!

PBFT: Pre-Prepare Phase

¢ Inthe second round, the primary multicasts m = [op, ts, cid, c-sig] to the

backups, including the view number vn, the assigned sequence number sn,
the message digest D(m) of m, and its own signature p-sig
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PBFT: Pre-Prepare Phase

¢ The sequence numbers are used to order the commands and the
signature is used to verify the authenticity as before

e Why adding the message digest of the client’s message?
— The primary signs only [PP, vn, sn, D(m)]. This is more efficient!

e Whatis a view?
— Aview is a configuration of the system. Here we assume that the system
comprises the same set of servers, one of which is the primary
— l.e., the primary determines the view: Two views are different if a different
server is the primary
— Aview number identifies a view
— The primary in view vn is the server whose identifier is vn mod n

— ldeally, all servers are (always) in the same view Nioreon

view changes
later...

— Aview change occurs if a different primary is elected




PBFT: Pre-Prepare Phase

e A backup accepts a pre-prepare message if
— the signatures are correct
— D(m) is the digest of m = [op, ts, cid, c-sig]
— itisinview vn

PBFT: Prepare Phase

¢ If a backup b accepts the pre-prepare message, it enters the prepare
phase and multicasts [P, vn ,sn, D(m), b-id, b-sig] to all other replicas and
stores this prepare message in its log

— It has not accepted a pre-prepare message for view number vn and sequence Client AN >
number sn containing a different digest \\
- i i \ '
the sequence number is between a low water mark h and a high water mark H Primary K prepare message
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PBFT: Commit Phase

e Areplica (including the primary) accepts a commit message if

— the signatures are correct

— itisinviewvn
— the sequence number is between a low water mark h and a high water mark H

e Each accepted commit message is also stored in the local log

PBFT: Response Phase

Client

Primary

Backup

Backup
Backup

If a backup b has accepted 2f+1 commit messages, it performs op
(“commits”) and sends a reply to the client
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PBFT: Garbage Collection

The servers store all messages in their log
In order to discard messages in the log, the servers create checkpoints
(snapshots of the state) every once in a while
A checkpoint contains the 2f+1 signed commit messages for the
committed commands in the log
The checkpoint is multicast to all other servers
If a server receives 2f+1 matching checkpoint messages, the checkpoint
becomes stable and any command that preceded the commands in the
checkpoint are discarded
Note that the checkpoints are also used to set the low water mark h
— to the sequence number of the last stable checkpoint

and the high water mark H
— to a “sufficiently large” value

PBFT: Correct Primary

If the primary is correct, the algorithm works

All 2f+1 correct nodes receive pre-prepare messages and send prepare

messages

All 2f+1 correct nodes receive 2f+1 prepare messages and send commit

messages

All 2f+1 correct nodes receive 2f+1 commit messages, commit, and send a

reply to the client
The client accepts the result
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PBFT: No Replies

¢ What happens if the client does not receive replies?
— Because the command message has been lost
— Because the primary is Byzantine and did not forward it
e After a time-out, the client multicasts the command to all servers
— Aserver that has already committed the result sends it again
— Aserver that is still processing it ignores it
— Aserver that has not received the pre-prepare message forwards the
command to the primary
— If the server does not receive the pre-prepare message in return after a
certain time, it concludes that the primary is faulty/Byzantine

This is how a failure of the
primary is detected!

PBFT: View Change

If a server suspects that the primary is faulty

— it stops accepting messages except checkpoint, view change and new view
messages

— it sends a view change message containing the identifier i = vn+1 mod n of the
next primary and also a certificate for each command for which it accepted
2f+1 prepare messages

— A certificate simply contains the 2f+1 accepted signatures
The next primary!

When server i receives 2f view change messages from other servers, it
broadcasts a new view message containing the signed view change

The servers verify the signature and accept the view change!

The new primary issues pre-prepare messages with the new view number
for all commands with a correct certificate

PBFT: Ordered Commands

e Commands are totally ordered using the view numbers and the sequence
numbers

¢ We must ensure that a certain (vn,sn) pair is always associated with a
unique command m!

e If a correct server committed [m, vn, sn], then no other correct server can
commit [m’, vn, sn] for any m# m’ s.t. D(m) # D(m’)
— If a correct server committed, it accepted a set of 2f+1 authenticated commit
messages

— The intersection between two such sets contains at least f+1 authenticated
commit messages

— There is at least one correct server in the intersection

— A correct server does not issue (pre-)prepare messages with the same vn and
sn for different m!

PBFT: Correctness

| Theorem I
If a client accepts a result, no correct server

commits a different result

Proof:

A client only accepts a result if it receives f+1 authenticated messages
with the same result

At least one correct server must have committed this result

As we argued on the previous slide, no other correct server can commit a
different result




PBFT: Liveness

Theorem
PBFT terminates eventually

Proof:

e The primary is correct

— As we argued before, the algorithm terminates after 5 rounds if no messages
are lost

— Message loss is handled by retransmitting after certain time-outs

— Assuming that messages arrive eventually, the algorithm also terminates
eventually

PBFT: Liveness

Theorem
PBFT terminates eventually

Proof continued:
e The primary is Byzantine

— If the client does not accept an answer in a certain period of time, it sends its

command to all servers

— In this case, the system behaves as if the primary is correct and the algorithm

terminates eventually!

e Thus, the Byzantine primary cannot delay the command indefinitely. As
we saw before, if the algorithm terminates, the result is correct!
— i.e., at least one correct server committed this result

PBFT: Evaluation

The Andrew benchmark emulates a software development workload
It has 5 phases:

Create subdirectories recursively

Copy a source tree

Examine the status of all the files in the tree without examining the data
Examine every byte in all the files

Compile and link the files

LAl o o

e |tis used to compare 3 systems
— BFS (PBFT) and 4 replicas and BFS-nr (PBFT without replication)
— BFS (PBFT) and NFS-std (network file system)

¢ Measured normal-case behavior (i.e. no view changes) in an isolated
network

PBFT: Evaluation

e Most operations in NFS V2 are not
read-only (r/o)
— E.g., read and lookup modify the
time-last-accessed attribute
e A second version of PBFT has been
tested in which lookups are read-only

e Normal (strict) PBFT is only 26% slower
than PBFT without replication
- Replication does not cost too much!

e Normal (strict) PBFT is only 3% slower than
NFS-std, and PBFT with read-only lookups
is even 2% faster!

BFS
phase strict r/olookup | BFS-nr
1 035(37%) | 0.47(34%) 035
2 924 (82%) (6% 5.08
3 T.24(18%) 611
4 8.77 (18%) 741
) 38.68 (20%) | 3838(19%) | 3112
total | 6448 (20%) | 6107 (200e) | 31.07

Times are in seconds

BFS

e stnict /o lookup

NFS-s1d

PR | -

0.55 (-69%) | 0.47(-73%)
924 (-2%) | T91(-16%)
724.(35%) | 645 (20%)
8TT(32%) | T87(19%)
38.68 (-2%) | 38.38(-2%)

1.75

946
5.36
6.60
3035

total

6148 (3%) | 6107 (-2%)

62357




PBFT: Discussion

e PBFT guarantees that the commands are totally ordered

e Ifaclient accepts a result, it knows that at least one correct server
supports this result

e Disadvantages:
e Commit not at all correct servers
— Itis possible that only one correct server commits the command

— We know that f other correct servers have sent commit, but they may only
receive f+1 commits and therefore do not commit themselves...

e Byzantine primary can slow down the system
— lIgnore the initial command
— Send pre-prepare always after the other servers forwarded the command
— No correct server will force a view change!

Beating the Lower Bounds...

e We know several crucial impossibility results and lower bounds
— No deterministic algorithm can achieve consensus
in asynchronous systems even if only one node may crash
— Any deterministic algorithm for synchronous systems i

that tolerates f crash failures takes at least f+1 rounds

e Yet we have just seen a deterministic algorithm/system that

— achieves consensus in asynchronous systems and that
tolerates f < n/3 Byzantine failures

— The algorithm only takes five rounds...?

¢ So, why does the algorithm work...?

Beating the Lower Bounds...

¢ So, why does the algorithm work...?

e |tis not really an asynchronous system

— There are bounds on the message delays

— This is almost a synchronous system... Messages do not just
e We used authenticated messages e ntally”

— It can be verified if a server really sent a certain message
e The algorithm takes more than 5 rounds in the worst case

— It takes more than f rounds!

Why?

Zyzzyva

e Zyzzyvais another BFT protocol
e Idea
— The protocol should be very efficient if there are no failures

— The clients speculatively execute the command without going through an
agreement protocol!

e Problem

— States of correct servers may diverge

— Clients may receive diverging/conflicting responses
¢ Solution

— Clients detect inconsistencies in the replies and help the correct servers to
converge to a single total ordering of requests




Zyzzyva

¢ Normal operation: Speculative execution!
e Case 1: All 3f+1 report the same result

Everything’s

Zyzzyva

e Case 2: Between 2f+1 and 3f results are the same
¢ The client broadcasts a commit certificate containing the 2f+1 results
¢ The client commits upon receiving 2f+1 replies
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e Case 3: Less than 2f+1 replies are the same
¢ The client broadcasts its request to all servers
e This step circumvents a faulty primary
Let’s try again!
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e Case 4: The client receives results that indicate an inconsistent ordering
by the primary

¢ The client can generate a proof

X . The primary
and append it to a view change message! messed up...
Client < — >
) >
AN 44 44 W
AN I' Il ll ! ‘:\\\
o Executel ', ', 7 ,’ \‘\‘\‘
Primary X i H W >
N [ -
\\\\\\ L1 E/lew change
\:\\ S Executel 9 \
Backup S AL — >
\\ AN Execute! \ \\
\ \4' * \
Backup A\t 5 >
N, Execute! ‘\
Backup / <.
L




Zyzzyva: Evaluation

e Zyzzyva outperforms PBFT because it normally takes only 3 rounds!
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More BFT Systems in a Nutshell: PeerReview

¢ The goal of PeerReview is to provide accountability for distributed
systems
— All nodes store 1/0 events, including all messages, A's witnesses
in alocal log /@

— Selected nodes (“witnesses”) are responsible @ @
for auditing the log .

— If the witnesses detect misbehavior, . e @ @

they generate evidence and e

make the evidence available @ . .

— Other nodes check the evidence and
report the fault e @
@ @ @) 9
&

e What if a node tries to manipulate
its log entries? A's log @ @
— Log entries form a hash chain &
creating secure histories @ B's log

More BFT Systems in a Nutshell: PeerReview

e PeerReview has to solve the same problems...

— Byzantine nodes must not be able to convince correct nodes that another
correct node is faulty

— The witness sets must always contain at least one correct node

e PeerReview provides the following guarantees:

1. Faults will be detected
— If a node commits a fault and it has a correct witness, then the witness
obtains a proof of misbehavior or a challenge that the faulty node cannot
answer
2. Correct nodes cannot be accused
— Ifanode is correct, then there cannot be a correct proof of misbehavior and
it can answer any challenge

More BFT Systems in a Nutshell: FARSITE

¢ “Federated, Available, and Reliable Storage for an Incompletely Trusted
Environment”

¢ Distributed file system without servers

¢ Clients contribute part of their hard disk to FARSITE

e Resistant against attacks: It tolerates f < n/3 Byzantine clients
e Files
— f+1replicas per file to tolerate f failures More efficient
— Encrypted by the user than replicating
e Meta-data/Directories the files!
— 3f+1 replicas store meta-data of the files
— File content hash in meta-data allows verification
— How is consistency established? FARSITE uses PBFT!




How to make sites responsive?

Goals of Replication

¢ Fault-Tolerance
— That’s what we have been looking at so far...
— Databases

— We want to have a system that looks like a
single node, but can tolerate node failures, etc.

— Consistency is important (,,better fail the whole
system than giving up consistency!”)

e Performance

— Single server cannot cope with millions of client
requests per second

— Large systems use replication to distribute load

— Availability is important (that’s a major reason
why we have replicated the system...)

— Can we relax the notion of consistency?

Example: Bookstore

Consider a Bookstore which sells it’s books over the world wide web:

What should the system provide?

¢ Consistency
For each user the system behaves reliable

¢ Availability
If a user clicks on a book in order to put it in his
shopping cart, the user does not have to wait for the
system to respond.

e Partition Tolerance
If the European and the American Datacenter lose
contact, the system should still operate.

How would you do that?

CAP-Theorem

| Theorem |
It is impossible for a distributed computer system to simultaneously

provide Consistency, Availability and Partition Tolerance.
A distributed system can satisfy any two of these guarantees at the
same time but not all three.




CAP-Theorem: Proof
o B
o

[ ai B|

* N, and N, are networks which both share a piece of data v.
e Algorithm A writes data to v and algorithm B reads data from v.

* If a partition between N; and N, occurs, there is no way to ensure consistency and
availability: Either A and B have to wait for each other before finishing (so
availability is not guaranteed) or inconsistencies will occur.
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CAP-Theorem: Consequences

Partition

rop Consistency

t until data is consistent and ept that things will become

therefore remain unavailable ,Eventually consistent”

during that time. (e.g. bookstore: If two orders for
the same book were received,
one of the clients becomes a
back-order)

rop Availability

Again, what would you prefer?
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amazon cop,

Availability is more
nt than consistency!
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CAP-Theorem: Criticism

e Application Errors
e Repeatable DBMS errors
e Adisaster (local cluster wiped out)

¢ Unrepeatable DBMS errors

e Operating system errors

¢ Hardware failure in local cluster

¢ A network partition in a local cluster

ily survived by lots of
algorithms

¢ Network failure in the WAN
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ACID and BASE

ACID

state, but will eventually become
consistent.

it I'hq

li naannn

2/130

ACID vs. BASE

ACID

e Simpler?
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Consistency Models (Client View) . = -
= (g a® w) ¥
e Interface that describes the - § ,ﬁ A )
system behavior =t / s b
)

e Recall: Strong consistency

— After an update of process A completes, any subsequent access (by A, B, C,
etc.) will return the updated value.

¢ Weak consistency
— Goal: Guarantee availability and some ,reasonable amount” of consistency!

— System does not guarantee that subsequent accesses will return the updated
value.
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Examples of Guarantees we might not want to sacrifice...

e If | write something to the storage, |
want to see the result on a subsequent
read.

e If | perform two read operations on the
same variable, the value returned at
the second read should be at least as
new as the value returned by the first
read.

¢ Known data-dependencies should be
reflected by the values read from the
storage system.
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Weak Consistency

¢ A considerable performance gain can result if messages are transmitted
independently, and applied to each replica whenever they arrive.
— But: Clients can see inconsistencies that would never happen with
unreplicated data.

H write(u,:=5)

write(uz::7)|: 0 write(u;:=2)
% } snapshot()
snapshot()
(ug:0, uy:0, u,:7, us:2) |]>

(ug:0, uy:5, u,:0, us:0)
A X Y B

~
This execution is NOT

sequentially consistent

N
=
w
o

Weak Consistency: Eventual Consistency

| Definition ]
Eventual Consistency

If no new updates are made to the data object, eventually all accesses
will return the last updated value.

e Special form of weak consistency

e Allows for ,disconnected operation”

Requires some conflict resolution
mechanism
— After conflict resolution all clients see the
same order of operations up to a certain
point in time (,,agreed past”).

— Conflict resolution can occur on the server-
side or on the client-side
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Weak Consistency: More Concepts

| Definition ]
Monotonic Read Consistency

If a process has seen a particular value for the object, any subsequent
accesses will never return any previous values.

| Definition ]
Monotonic Write Consistency

A write operation by a process on a data item u is completed before any
successive write operation on u by the same process (i.e. system
guarantees to serialize writes by the same process).

| Definition ]
Read-your-Writes Consistency

After a process has updated a data item, it will never see an older value
on subsequent accesses.

Weak Consistency: Causal Consistency

| Definition ]
A system provides causal consistency if memory operations that

potentially are causally related are seen by every node of the system in
the same order. Concurrent writes (i.e. ones that are not causally related)
may be seen in different order by different nodes.

| Definition ]
The following pairs of operations are causally related:

* Two writes by the same process to any memory location.

¢ Aread followed by a write of the same process (even if the write
addresses a different memory location).

¢ Aread that returns the value of a write from any process.

* Two operations that are transitively related according to the above
conditions.

Causal Consistency: Example

write(u:=7)|:

d(u)
:|r7ea u

Q
<[
write(u::9)[s 7jwrite(u:=4)
d(u)
read(u; |j: ><<[];ea u
d(u) ]: i[: d(u)
rea u4|: ]rgea u
A X Y B

This execution is causally consistent, but
NOT sequentially consistent

Large-Scale Fault-Tolerant Systems

How do we build these highly available, fault-tolerant systems consisting
of 1k, 10k,..., 1M nodes?

Idea: Use a completely decentralized system, with a focus on availability,
only giving weak consistency guarantees. This general approach has been
popular recently, and is known as, e.g.

— Cloud Computing: Currently popular umbrella name

— Grid Computing: Parallel computing beyond a single cluster

— Distributed Storage: Focus on storage

— Peer-to-Peer Computing: Focus on storage, affinity with file sharing

— Overlay Networking: Focus on network applications

— Self-Organization, Service-Oriented Computing, Autonomous Computing, etc.

Technically, many of these systems are similar, so we focus on one.




P2P: Distributed Hash Table (DHT)

e Data objects are distributed among the peers
— Each object is uniquely identified by a key

Distributed Hashing

e The hash of afile is its key

e Each f tai ti hash
ach peer can perform certain operations 10111010101110011... = .73
— Search(key) (returns the object associated with key)
— Insert(key, object) @E (]
— Delete(key) = = . .
e Each peer stores data in a certain range of the ID space [0,1]
r searchikey) @é
e Classic implementations of these operations =] & = 0 -101x 1
— Search Tree (balanced, B-Tree) ‘ 5‘»’? ﬁ : : : : : : : : :
— Hashing (various forms) e =
- [5]3 g.{% [5]3 Zlé [5]3 gl[é I W
e “Distributed” implementations % Ej — Ej —— Ej —— Ej E
— Linear Hashing
— Consistent Hashing ¢ Instead of storing data at the right peer, just store a forward-pointer
Linear Hashing Consistent Hashing
* Problem: More and more objects should be stored = Need to buy new ¢ Linear hashing needs central dispatcher
machines! ¢ |dea: Also the machines get hashed! Each machine is responsible for the
e Example: From 4 to 5 machines files closest to it
¢ Use multiple hash functions for reliability!

0 1
I 1 1 1 1
0 Move many objects (about 1/2) 1 0 / \ />< \ 1
l
| = — e | \/ |
0 1

Linear Hashing: Move only a few objects to new machine (about 1/n)

—




Search & Dynamics

Problem with both linear and consistent hashing is that all the
participants of the system must know all peers...

— Peers must know which peer they must contact for a certain data item
— This is again not a scalable solution...

e Another problem is dynamics!

— Peers join and leave (or fail)

P2P Dictionary = Hashing

hash
- 10111010101110011...

= 001x
0000x

P2P Dictionary = Search Tree

o

' e
AN TPy

= = o T
001x 100x  101x
0000x  0001x

Storing the Search Tree

e Where is the search tree stored?
e In particular, where is the root stored?

— What if the root crashes?! The root clearly reduces scalability & fault
tolerance...

— Solution: There is no root...!

¢ If a peer wants to store/search, how does it know where to go?

— Again, we don’t want that every peer has to know all others...
— Solution: Every peer only knows a small subset of others




The Neighbors of Peers 001x

’ Search hash

P2P Dictionary: Search

1100x

\01"
N2 =
=

1101x

= Target
0001X machine

P2P Dictionary: Search

e Again, 001 searches for 100:

P2P Dictionary: Search

e Again, 001 searches for 100:




Search Analysis

e We have n peers in the system
e Assume that the “tree” is roughly balanced
— Leaves (peers) on level log, n * constant

e Search requires O(log n) steps
— After k" step, the search is in a subtree on level k
— A “step” is a UDP (or TCP) message
— The latency depends on P2P size (world!)

e How many peers does each peer have to know?
— Each peer only needs to store the address of log, n * constant peers

— Since each peer only has to know a few peers, even if n is large, the system
scales well!

Peer Join

¢ How are new peers inserted into the system?

e Step 1: Bootstrapping

¢ Inorder to join a P2P system, a joiner must already know a peer already in
the system
e Typical solutions:

— Ask a central authority for a list of IP addresses that have been in the P2P
regularly; look up a listing on a web site

— Try some of those you met last time
— Just ping randomly (in the LAN)

Peer Join

e Step 2: Find your place in the P2P system

Peer ID!
e Typical solution:

— Choose a random bit string (which determines the place in the system)
— Search* for the bit string

— Split with the current leave responsible for the bit string

— Search* for your neighbors

* These are standard searches

Example: Bootstrap Peer with 001

Random Bit String = 100101...




New Peer Searches 100101...

s
ary
.

| J:

= —[J

__

SR

=
Random Bit String
=100101...

New Peer found leaf with ID 100...

¢ The leaf and the new peer
split the search space!

Find Neighbors

Peer Join: Discussion

A regular

e If tree is balanced, the time to join is
search...

— O(log n) to find the right place
— O(log n)-O(log n) = O(log? n) to find all neighbors

¢ ltis be widely believed that since all the peers choose their position
randomly, the tree will remain more or less balanced
— However, theory and simulations show that this is not really true!




Peer Leave

¢ Since a peer might leave spontaneously (there is no leave message), the
leave must be detected first

e Naturally, this is done by the neighbors in the P2P system (all peers
periodically ping neighbors)

e If a peer leave is detected, the peer must be replaced. If peer had a sibling
leaf, the sibling might just do a “reverse split”:

¢ |f a peer does not have a sibling, search recursively!

Peer Leave: Recursive Search

¢ Find a replacement:
1.  Go down the sibling tree until you find sibling leaves
2. Make the left sibling the new common node
3. Move the free right sibling to the empty spot

Fault-Tolerance?

¢ |n P2P file sharing, only pointers to the data is stored
— If the data holder itself crashes, the data item is not available anymore

e What if the data holder is still in the system, but the peer that stores the
pointer to the data holder crashes?
— The data holder could advertise its data items periodically

— Ifit cannot reach a certain peer anymore, it must search for the peer that is
now responsible for the data item, i.e., the peer’s ID is closest to the data
item’s key

e Alternative approach: Instead of letting the data holders take care of the
availability of their data, let the system ensure that there is always a
pointer to the data holder!

— Replicate the information at several peers
— Different hashes could be used for this purpose

Questions of Experts...

e Question: | know so many other structured peer-to-peer systems (Chord,
Pastry, Tapestry, CAN...); they are completely different from the one you
just showed us!

¢ Answer: They look different, but in fact the difference comes mostly from
the way they are presented (I give a few examples on the next slides)




The Four P2P Evangelists

e If you read your average P2P paper, there are (almost) always four papers
cited which “invented” efficient P2P in 2001:

‘ Chord ‘ ’ CAN ‘ ‘ Pastry ‘ ‘Tapestry ‘

e These papers are somewhat similar, with the exception of CAN (which is
not really efficient)

e So what are the ,Dead Sea scrolls of P2P”?

Intermezzo: “Dead Sea Scrolls of P2P”

»Accessing Nearby Copies of Replicated Objects in a Distributed
Environment” [Greg Plaxton, Rajmohan Rajaraman, and Andrea Richa,
SPAA 1997]

e Basically, the paper proposes an efficient search routine (similar to the
four famous P2P papers)

— In particular search, insert, delete, storage costs are all logarithmic, the base
of the logarithm is a parameter

e The paper takes latency into account

— In particular it is assumed that nodes are in a metric, and that the graph is of
»bounded growth” (meaning that node densities do not change abruptly)

Intermezzo: Genealogy of P2P

The parents of Plaxton et al.:
Consistent Hashing, Compact Routing, ...

1998

’ Chord ‘ ‘ CAN ‘ ‘ Pastry ‘ ’Tapestry ‘ 2001 ‘ eDonkey ‘ ‘ Kazaa ‘

WWW, POTS, etc.

‘ Viceroy ‘ ‘ P-Grid ‘ ‘ Kademlia ‘ 2002 ‘ Gnutella-2 ‘ ‘ BitTorrent ‘

‘ Koorde ‘ ‘ SkipGraph ‘ ‘ SkipNet ‘ 2003 ‘ Skype ‘ ’ Steam ‘ ‘ PS3 ‘

Chord

e Chord is the most cited P2P system [lon Stoica, Robert Morris, David
Karger, M. Frans Kaashoek, and Hari Balakrishnan, SIGCOMM 2001]

¢ Most discussed system in distributed systems and networking books, for
example in Edition 4 of Tanenbaum’s Computer Networks

¢ There are extensions on top of it, such as CFS, lvy...




Chord

e Every peer has log n many neighbors 5]

— Oneindistance =2
fork=1,2, .., logn

Example: Dynamo

¢ Dynamo is a key-value storage system by Amazon (shopping carts)
¢ Goal: Provide an “always-on” experience
— Availability is more important than consistency Basically what
e The system is (nothing but) a DHT we talked about
e Trusted environment (no Byzantine processes)
¢ Ring of nodes
— Node n; is responsible for keys between n;_; and n;
— Nodes join and leave dynamically
e Each entry replicated across N nodes
e Recovery from error:
— When? On read

— How? Depends on application, e.g. “last write
wins” or “merge”

— One vector clock per entry to manage
different versions of data Figure 2: Partitioning and replication of keys in ynamo

ring,

Skip List

e How can we ensure that the search tree is balanced?

— We don’t want to implement distributed AVL or red-black trees...
e Skip List:

— (Doubly) linked list with sorted items

— An item adds additional pointers on level 1 with probability . The items with
additional pointers further add pointers on level 2 with prob. % etc.

— There are log, n levels in expectation

e Search, insert, delete: Start with root, search for the right interval on
highest level, then continue with lower levels

Skip List

¢ It can easily be shown that search, insert, and delete terminate in O(log n)
expected time, if there are n items in the skip list

¢ The expected number of pointers is only twice as many as with a regular
linked list, thus the memory overhead is small

e Asa plus, the items are always ordered...




P2P Architectures

e Use the skip list as a P2P architecture

— Again each peer gets a random value between 0 and 1 and is responsible for
storing that interval

— Instead of a root and a sentinel node (“=="), the list is short-wired as a ring

e Use the Butterfly or DeBruijn graph as a P2P architecture

— Advantage: The node degree of these graphs is constant = Only a constant
number of neighbors per peer

— Asearch still only takes O(log n) hops

Dynamics Reloaded

e Churn: Permanent joins and leaves
— Why permanent?

— Saroiu et al.: ,,A Measurement Study of P2P File Sharing Systems”:
Peers join system for one hour on average

— Hundreds of changes per second with millions of peers in the system!

¢ How can we maintain desirable 5{/:)‘_:)(:_‘_:\(
properties such as ’(26—' ‘,'_"_.__-;'_;._“_v___ 5 ;H-‘x»?‘_\
— connectivity A TSR S\
— small network diameter 1' 7 N -/.

— low peer degree? 1SNT L

A First Approach

¢ A fault-tolerant hypercube?

¢ What if the number of peers is not 21?
e How can we prevent degeneration?
¢ Where is the data stored?

¢ Idea: Simulate the hypercube! 000 001

Simulated Hypercube

¢ Simulation: Each node consists of several peers

e Basic components:

e Peer distribution
— Distribute peers evenly . .
among all hypercube nodes
— Atoken distribution problem
¢ Information aggregation . .
— Estimate the total number of
peers
— Adapt the dimension of . .
the simulated hypercube




Peer Distribution

e Algorithm: Cycle over dimensions . l v
and balance! )

e Perfectly balanced after d rounds

Dimension of
hypercube

* Problem 1: Peers are not fractionall

¢ Problem 2: Peers may join/leave Ve lin
during those d rounds! l J
Il.l_ 4

e “Solution”: Round numbers and
ignore changes during the d rounds

Information Aggregation

¢ Goal: Provide the same (good!) estimation of the total number of peers
presently in the system to all nodes

e Algorithm: Count peers in every sub-cube by exchanging messages wih
the corresponding neighbor!

3

e Correct number after d rounds . o 0|

jpad

e Problem: Peers may join/leave 9

during those d rounds!

¢ Solution: Pipe-lined execution T/—.—q/‘ e
..A/'

4 . 5 . 12 ‘r 3

¢ |t can be shown that all nodes get the same estimate
¢ Moreover, this number represents the correct state d rounds ago!

Composing the Components

¢ The system permanently runs
— the peer distribution algorithm to balance the nodes

— the information aggregation algorithm to estimate the total number of peers
and change the dimension accordingly

e How are the peers connected inside a simulated node, and how are the
edges of the hypercube represented?

e Where is the data of the DHT stored?

Distributed Hash Table

e Hash function determines node where data is replicated

e Problem: A peer that has to move to another node must replace store
different data items
¢ |dea: Divide peers of a node into
core and periphery
— Core peers store data

— Peripheral peers are used for
peer distribution

e Peers inside a node are
completely connected

e Peers are connected to all

core peers of all neighboring
nodes




Evaluation

e The system can tolerate O(log n) joins and leaves each round

e The system is never fully repaired, but always fully functional!

e In particular, even if there are O(log n) joins/leaves per round we always
have
— atleast one peer per node
— at most O(log n) peers per node
— a network diameter of O(log n)
— apeer degree of O(log n)

Number of
neighbors/connections

Byzantine Failures

¢ If Byzantine nodes control more and more corrupted nodes and then
crash all of them at the same time (“sleepers”), we stand no chance.

e “Robust Distributed Name Service” [Baruch Awerbuch and Christian
Scheideler, IPTPS 2004]

¢ |dea: Assume that the Byzantine
peers are the minority. If the
corrupted nodes are the majority in
a specific part of the system, they
can be detected (because of their
unusual high density).

Selfish Peers

e Peers may not try to destroy the system, instead they may try to benefit
from the system without contributing anything

e Such selfish behavior is called free riding or freeloading

e Free riding is a common problem in file sharing applications:

e Studies show that most users in the Gnutella network do not provide
anything
— Gnutella is accessed through clients such as BearShare, iMesh...

e Protocols that are supposed to be “incentive-compatible”, such as

BitTorrent, can also be exploited
— The BitThief client downloads without uploading! .

Game Theory

e Game theory attempts to mathematically capture behavior in strategic
situations (games), in which an individual's success in making choices
depends on the choices of others.

e “Game theory is a sort of umbrella or 'unified field' theory for the rational
side of social science, where 'social' is interpreted broadly, to include
human as well as non-human players (computers, animals, plants)"
[Aumann 1987]
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Selfish Caching

* P2P system where peer i experiences a demand w; for a certain file.
— Setting can be extended to multiple files
e A peercan either
— cache the file for cost a, or
— get the file from the nearest peer [(i) that caches it for cost w; - d; ;3
e Example: a =4, w; =1
2 3

O—0O—=0

What is the global ,best” configuration?
Who will cache the object?
Which configurations are ,,stable“?

Social Optimum & Nash Equilibrium

¢ In game theory, the ,best” configurations are called social optima
— A social optimum maximizes the social welfare

| Definition ]
A strategy profile is called social optimum iff it
minimizes the sum of all cost.

— A strategy profile is the set of strategies chosen by the players

e ,Stable” configurations are called (Nash) Equilibria

| Definition ]
A Nash Equilibrium (NE) is a strategy profile for which
nobody can improve by unilaterally changing its strategy

L

wisnaERIEN

Systems are assumed to magically converge towards a NE

Selfish Caching: Example 2

e Which are the social optima, and the Nash Equilibria in the following
example?

- a=4

2 3 2
O—0O—"0—=0
w;=0.5 1 1 0.5

¢ Nash Equilibrium 95 Social optimum
¢ Does every game have

— asocial optimum?

— a Nash equilibrium?

Selfish Caching: Equilibria

| Theorem |
Any instance of the selfish caching game has a Nash

equilibrium

¢ Proof by construction:

— The following procedure always finds a Nash equilibrium

1. Puta peer y with highest demand into caching set
2. Remove all peers z for which d,,w, < a
3. Repeat steps 1 and 2 until no peers left

— The strategy profile where all peers in the caching set cache the file, and all
others chose to access the file remotely, is a Nash equilibrium.




Selfish Caching: Proof example

1. Puta peer y with highest demand into caching set
2. Remove all peers z for which d,,w, < «
3. Repeat steps 1 and 2 until no peers left

O

Selfish Caching: Proof example

1. Put a peer y with highest demand into caching set
2. Remove all peers z for which d,,w, < a
3. Repeat steps 1 and 2 until no peers left

O

Selfish Caching: Proof example

1. Puta peer y with highest demand into caching set
2. Remove all peers z for which d,,w, < a
3. Repeat steps 1 and 2 until no peers left

@.

Selfish Caching: Proof example

1. Put a peer y with highest demand into caching set
2. Remove all peers z for which d,,w, < a
3. Repeat steps 1 and 2 until no peers left

0.

— Does NE condition hold for every peer?




Proof

e If peer x not in the caching set
— Exists y forwhichw,d,, < a

x*xy

- Noincentive to cache because remote access cost w,d,,, are smaller than
placement cost a

e If peer x is in the caching set

— For any other peer y in the caching set:
— Case 1: y was added to the caching set before x
— Itholds that w.d,, > a due to the construction
— Case 2: y was added to the caching set after x
— Itholds thatw, = w,, and w, d,, = a due to the construction
— Therefore w,d,, 2w,d, > a
- x has no incentive to stop caching because all other caching peers are too far
away, i.e., the remote access cost are larger than

Price of Anarchy (PoA)

With selfish peers any caching system converges to a stable equilibrium
state

— Unfortunately, NEs are often not optimal! 2 3

O—0O0—=0

e Idea:
— Quantify loss due to selfishness by comparing the performance of a system at
Nash equilibrium to its optimal performance

— Since a game can have more than one NE it makes sense to define a worst-case
Price of Anarchy (PoA), and an optimistic Price of Anarchy (OPoA)

| Definition ] | Definition ]
POA — cost(WorSt NE) OPOA — cost(be-st NE)
cost(social Opt) cost(social Opt)

- PoA>=0PoA=>1

— A PoA close to 1 indicates that a system is insusceptible to selfish behavior

PoA for Selfish Caching

How large is the (optimistic) price of anarchy in the following examples?

1)0v=4, Wl':l

2Q)o =4

3)a =101

100 1 1

PoA for Selfish Caching with constant demand and distances

PoA depends on demands, distances, and the topology
e Ifall demands and distances are equal (e.g. w; =1, d; = 1) ...
— How large can the PoA grow in cliques?

— How large can the PoA grow on a star?

— How large can PoA grow in an arbitrary topology?




PoA for Selfish Caching with constant demand

¢ PoA depends on demands, distances, and the topology

e Price of anarchy for selfish caching can be linear in the number of peers
even when all peers have the same demand (w; = 1)

cost(NE) =« +g(a —£)
cost(OPT) =2«

PoA:OPoA:O%+£ < O(n)

n/2 n/2

Another Example: Braess” Paradox

¢ Flow of 1000 cars per hour from A to D
e Drivers decide on route based on current traffic
¢ Social Optimum? Nash Equilibrium? PoA?

x/1000 h

¢ Is there always a Nash equilibrium?

Rock Paper Scissors

Scissors

cut paper

=

o
1

=

Stone
blunts
scissors

e Which is the best action: O, , or g“é ?

e What is the social optimum? What is the Nash Equilibrium?
¢ Any good strategies?

Mixed Nash Equilibria

e Answer: Randomize !

— Mix between pure strategies. A mixed strategy is a probability distribution
over pure strategies.

— Can you beat the following strategy in expectation?

(Pl )1=1/2, pI[[IY] = 1/4, pl == 1= 1/4)

— The only (mixed) Nash Equilibrium is (1/3, 1/3, 1/3)
— Rock Paper Scissors is a so-called Zero-sum game

Theorem [Nash 1950] ]
Every game has a mixed Nash equilibrium




Solution Concepts

¢ A solution concept predicts how a game turns out

| Definition ]
A solution concept is a rule that maps games to a set of possible
outcomes, or to a probability distribution over the outcomes

— The Nash equilibrium as a solution concept predicts that any game ends up in
a strategy profile where nobody can improve unilaterally.
If a game has multiple NEs the game ends up in any of them.

e Other solution concepts:

— Dominant strategies

— A game ends up in any strategy profile where all players play a dominant strategy,
given that the game has such a strategy profile

— Astrategy is dominant if, regardless of what any other players do, the strategy
earns a player a larger payoff than any other strategy.

— There are more, e.g. correlated equilibrium

How can Game Theory help?

e Economy
— understand markets?
— Predict economy crashes?

— Sveriges Riksbank Prize in Economics (“Nobel Prize”) has been awarded many
times to game theorists

e Problems
— GT models the real world inaccurately
— Many real world problems are too complex to capture by a game
— Human beings are not really rational

e GTin computer science
— Players are not exactly human
— Explain unexpected deficiencies (kazaa, emule, bittorrent etc.)
— Additional measurement tool to evaluate distributed systems

Mechanism Design

e Game Theory describes existing systems

— Explains, or predicts behavior through solution concepts (e.g. Nash
Equilibrium)

e Mechanism Design creates games in which it is best for an agent to
behave as desired by the designer
— incentive compatible systems
— Most popular solution concept: dominant strategies
— Sometimes Nash equilibrium

— Natural design goals
— Maximize social welfare
— Maximize system perfomance

Mechanism design = ,inverse“ game theory

Incentives

¢ How can a mechanism designer change the incentive structure?
— Offer rewards, or punishments for certain actions
— Money, better QoS
— Emprisonment, fines, worse QoS
— Change the options available to the players
— Example: fair cake sharing (MD for parents)
— CS: Change protocol




Selfish Caching with Payments

e Designer enables peers to reward
each other with payments

e Peers offer bids to other peers for =
caching

2 3
o @0
1 1

Selfish Caching: Volunteer Dilemma

¢ Clique
- Constant distances d;; = 1 15
— Variable demands 1 < w; < a = 20

— Peers decide whether to cache or « Who goes first? / °
not after all bids are made . B
— Peer with highest demand?
— How does the situation change if the
* OPoA=1 demands are not public knowledge,
e However, PoA at least as bad and peers can lie when announcing 4 3
as in the basic game their demand?
8
n/2 n/2
Lowest-Price Auction Second-Lowest-Price Auction
* Mechanism De'5|.gn'er , e The auctioneer chooses the peer with the lowest offer,
— Wants to minimize social cost 15 o= 20 but pays the price of the second lowest bid!
— Is willing to pay money for a good solution e What should i bid? 15 =20
~ Does not know demands w; — Truthful (b; = oo — w; ), overbid, or underbid? >
Idea: Hold an auction 7
— Auction should generate competition among 4 3
peers. Thus get a good deal. 8
— Peers place private bids b;. A bid b, ‘
represents the minimal payment for which o w;
peer i is willing to cache. 4 3
— Auctioneer accepts lowest offer. —
Pays b,,,, = min b; to the bidder of b,,,.. |
¥S Omin i e Y Truthful bidding is the dominant strategy in a second-

e  What should peer i bid?
- o — w; < bi
- i does not know other peers’ bids

price auction




Proof

o letv,=a—w;.leth,, = l’}lqgl b;.

e The payoffforiis b,,, — vi if b; < bpy;n,and 0 otherwise.

e truthful dominates underbidding”
- If b,,;,, > v; then both strategies win, and yield the same payoff.
- If b,,;, < b; then both strategies lose.

- If b; < byin < v; then underbidding wins the auction, but the payoff is
negative. Truthful bidding loses, and yields a payoff of 0.

— Truthful bidding is never worse, but in some cases better than underbidding.

e truthful dominates overbidding”
- If b,,;,, > b; then both strategies win and yield the same payoff
- If b,,;, < v; then both strategies lose.

— If v; < byin < b; then truthful bidding wins, and yields a positive payoff.
Overbidding loses, and yields a payoff of 0.

— Truthful bidding is never worse, but in some cases better than overbidding.

¢ Hence truthful bidding is the dominant strategy for all peers i.

Another Approach: 0-implementation

e Athird party can implement a strategy profile by offering high
enough ,insurances”

— A mechanism implements a strategy profile S if it makes
all strategies in S dominant.

e Mechanism Designer publicly offers the following dealto all 7

peers except to the one with highest demand, p,,,,.:

— ,If nobody choses to cache | will pay you a millinillion.” 4

¢ Assuming that a millinillion compensates for not being able to
access the file, how does the game turn out?

Theorem
Any Nash equilibrium can be implemented for free

15

8

MD for P2P file sharing

e Gnutella, Napster etc. allow easy free-riding
e BitTorrent suggests that peers offer better QoS (upload speed) to
collaborative peers
— However, it can also be exploited
— The BitThief client downloads without uploading!

— Always claims to have nothing to trade yet .
— Connects to much more peers than usual clients

* Many techniques have been proposed to limit free riding behavior
— Tit-for-tat (T4T) trading
— Allowed fast set (seed capital),

Source coding,

— indirect trading, increase trading opportunities
— virtual currency...

— Reputation systems
— shared history

MD in Distributed Systems: Problems

e Virtual currency

— no trusted mediator

— Distributed mediator hard to implement
e Reputation systems

- collusion (,7:?’,_ NN

— Sibyl attack %%‘j}j < !
N

‘g" / \ He is lying!

e Malicious players

— Peers are not only selfish
but sometimes Byzantine




Computation in Large Systems

state updates
e So far, we talked (mainly) about storage systems

— Main question: How can we guarantee a consistent .
system state !

e Large systems can also be used for distributed computation

job - job
= [
result = result =

— Distribute work load in the system!
— How can we do this?
— What can go wrong?

Computation in Large Systems: Basic Idea

» Several steps are needed for a parallel execution: m -”

¢ The job must be split into many small jobs
— These jobs can be executed in parallel e ... PR

¢ The jobs must be distributed
— Each ,worker machines” may get many jobs

\@

¢ The results are sent back to the master

¢ The partial results may be merged

i\l
<

Computation in Large Systems: What if...

e Several issues need to be addressed:

77

e What if a worker machine crashes?

¢ What if a worker machine is very slow?
— Bottleneck of the computation

¢ We have the same problems as before...!

Computation in Large Systems: More Problems

e Even if there were no such problems, we need to

— write code for the worker machines and install PN
this code on the machines s

£
- =

¢ The complexity of the program increases significantly!!!

— split the job into smaller jobs
— assign jobs to worker machines
— distribute the jobs to the machines

— balance the load on all machines
— collect the (partial) results from the machines
— assembly the results

¢ Moreover, we do not want to re-execute all steps if we need to solve
different computational problems...

e Solution?




MapReduce

e MapReduce is a framework developed by Google that addresses all these
issues

— Parallelization, fault-tolerance, data distribution, load balancing N
— Allin one library! \:/)

e Model for the jobs: Each job is considered a two-step operation, a map
followed by a reduce

e map and reduce are popular concepts in functional programming
— map: A function f is applied to each element of a list > The result is a list

— reduce: A function f is applied to an accumulator combined with each
element of a list > The result is in the accumulator

MapReduce: Map & Reduce

¢ map: A function f is applied to each element of a list > The result is a list

a, a, an
foOf f
bl bZ bm

¢ reduce: A function f is applied to an accumulator combined with each
element of a list » The result is in the accumulator

ay a, a

MapReduce: Functional Programming

e The type of mapis: (a -> b) -> (a list) -> (b list)

Function f mapping Input list of Output list of
elementatob elements of typea ' elements of type b
e mapf[l=1] | concatenation

map f (h::list) = (f h) :: (map f list)

Output in the

e The type of reduce is: (a*b->b) ->b -> (alist) -> b e mulator

Function f mapping = Accumulator Input list of
pair (a,b) to b of type b elements of type a

e reduce facc[]=acc |
reduce f acc (h::list) = reduce f (f h acc) list

Also called a fold

MapReduce: What is this good for?

¢ Many functions can be expressed with map & reduce!
e Example 1: Function double that doubles all the values in a list
¢ How can we express this function using map and/or reduce?

e Answer: double list = map (x => 2*x) list

e Example 2: Function sum that sums up all the values in a list
e How can we express this function?

e Answer: sum list = reduce (acc x => acc+x) O list

Al
e Cool, but how can we use this in a distributed system? '




MapReduce: Basic Approach

* In MapReduce, the input data is always a list of key/value pairs and the
output is a list of values

¢ The map function maps a key/value pair to a list of intermediate
key/value pairs:

<key,val> 2> {<key,,val,>,...,<key,val >}

e The reduce function merges all intermediate values associated with the
same intermediate key:

{<key,, val;;>,...,< key,val, >} = <key,val>

MapReduce: Architecture

Same pool

¢ There are many worker machines T kers

e The input list is split and sent to the worker machines
¢ The function map is executed and the output is sent to reduce workers
e The reduce workers execute reduce and send/store the results

Input Input Intermediste Output Output
Pairs Fairs

Pairs

DL Tm—
>

Step 1 Step 2 Step ¥ Step 4. Step &
sphit Map Collect & Sort Reduce Store
(Framework) (Framework) (Framework)

MapReduce: Architecture

e One worker is the master
e It assigns map & reduce jobs to the other workers

e |t stores the state of each map & reduce job
(idle,in-progress,completed) and the identify of all non-idle machines

e It stores the locations of the output files of the map & reduce tasks

map & reduce

map & reduce

master

reduce

MapReduce: Example Tasks

¢ URL access frequency: Given a (distributed) DB of URLs, find the top-100
URLs that were accessed the most!
— The map function outputs <URL_key,1> for each URL
— The reduce function adds together all values for the same URL key
— The output is merged and sorted according to the values
¢ Inverted index: For each keyword, find the (web) documents that contain
this word!
— The map function emits <word,doc_key> when processing documents
— The reduce funtion adds all document keys to a list for each assigned keyword
¢ Reverse web-link graph: For each website, find the websites that have a
link to it!

— The map function outputs <target,source> if a link to the website target is
found when parsing the website source

— The reduce funtion adds all sources to a list for each assigned target website




MapReduce: Fault Tolerance

e What if a worker machine fails? Results stored on

e The master pings each worker periodically failed machine...
— Time-out—> Worker is marked as failed
¢ All map tasks and incomplete reduce tasks are computed again on a
different machine!

¢ Only completed reduce tasks are not executed again since the results are

stored in a global file system
Such as Google’s GFS

¢ If a map worker fails, the corresponding reduce workers are notified
— The intermediate results will be read from the new map worker

update

MapReduce: Fault Tolerance

e What if the master fails?

¢ The master could write periodic checkpoints and store them in the global

file system
?

¢ However, since the failure of the master is unlikely, the entire
computation is aborted

— The clients can retry the MapReduce operation

Motivation: Simple
implementation

?7??
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MapReduce: Optimizations

e Several optimizations are implemented to speed up the computation:
¢ Locality: Conserve network bandwidth

— The master attempts to schedule map tasks on machines containing the
corresponding input data

— If this is not possible, it tries to find a machine on the same network switch

job

¢ Backup tasks: Speed up the ,end game”

— When close to completion, backup executions of the remaining tasks are
started

— The task is marked as complete when any machine completes it

MapReduce: Optimizations

e Combiner functions: Perform a local reduce operation

— If the reduce function is commutative and associative, the output of the map
function can be combined locally

— For example, when computing word counts: Entries <word,1>, <word,1>,
<word,1> can be merged = <word,3>

— Reduce workers need to read less data!

¢ Skipping Bad Records: Ensure termination
— If there is bug in the user code causing a map or reduce task to crash on
certain records, reassigning the task does not help

— If the master sees more than one failure for a certain record, it instructs the
workers to skip it

Sometimes the bug cannot
be fixed, e.g., if the source
code is unavailable




MapReduce: Performance

¢ Test: How long does it take to sort 10%° 100-byte records?

e Sorting with MapReduce...?

— The map function extracts a 10-byte sorting key from each record and emits
the key and the record as the intermediate key/value

~1TB

— The reduce function is the identity function because MapReduce ensures that
intermediate key/value pairs are processed in increasing key order

— Thus, the map and reduce functions basically do not incur any costs = The
performance of the architecture itself is measured!

e There are 15,000 map tasks and 4000 reduce tasks and 1800 workers
e Test (a): Normal execution
e Test (b): No backup tasks

e Test (c): 200 worker processes killed after several minutes

MapReduce: Performance
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MapReduce: Performance
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MapReduce: Implementation

¢ The most widely used implementation of MapReduce is called Hadoop
— Free Apache project written in Java
¢ Hadoop is used to run large distributed computations in many companies:

(@ D
Amazon
eBay

HP

IBM
Microsoft
Twitter

a- ’

¢ How is Hadoop used?




Hadoop: Example - Word Count

¢ Simple example: Compute the word counts

The entries
are sorted!
Input Splitting Mapping Shuffling Reducing Final result
—s{ Bear, 2 ’
Deer, 1 &
Deer Bear River | » Bear 1 | .
— River, 1 |\ A
Deer Bear River | Car, 1 | Car, 3
CarCarRiver | —» CarCarRiver |—» Car,1 Deer, 2
Deer Car Bear — River, 1 |. River, 2
N s u-‘ Deer, 2 | -
S y : v
R Deer,1 | ~ P o
‘1 Deer Car Bear \ = Canl " 7 - g
Bear,1 |~ .| River, 1 —-| River,2 |-
River, 1

Hadoop: Example - Word Count

map & reduce are

public class WordCount { implemented as classes

public static class Map extends MapReduceBase implements
Mapper<LongWritable,Text,Text,IntWritable> {
private final static IntWritable one = new IntWriteable(1);
private Text word = new Text();

public void map(LongWritable key,Text value,
OutputCollector<Text,IntWritable> output,Reporter reporter)
throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while(tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word,one); }

Hadoop: Example - Word Count

public static class Reduce extends MapReduceBase implements
Reducer<Text,IntWritable,Text,IntWritable> {

public void reduce(Text key,lterator<IntWritable> values,
OutputCollector<Text,IntWritable>,Reporter reporter)
throws IOException {

int sum =0;

while(values.hasNext()) sum += values.next().get();

output.collect(key,new IntWritable(sum));

Hadoop: Example - Word Count

public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setlobName(“wordcount “);
conf.setOutputKeyClass(Text.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setinputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
conf.setlnputPath(new Path(args[0]));
conf.setOutputPath(new Path(args[1]));
JobClient.runJob(conf);

Configure map & reduce]
for this job

} This code can be run locally or in a
fully-distributed Hadoop installation!




MapReduce: Summary Summary

e The MapReduce framework turned out to be very successful ¢ We have systems that guarantee strong consistency
— Used by many big companies - 2PC, 3PC
e Google reported in 2008 that they can sort 1TB in 68 seconds - Paxos
— Using 1000 machines and 12,000 disks — Chubby
e Google said that they can even sort 1PB (!) in 6 hours and 2 minutes — PBFT, Zyzzyva, PeerReview, FARSITE
— Using 4000 machines and 48,000 disks e We also talked about techniques to handle large-scale networks
Why? Simple — Consistent hashing
* Shortcomings? impler;1entation — DHTs, P2P techniques
- If the master fails, the operation fails — Dynamics
— The reduce tasks are started after the last map task is complete — Dynamo
— The framework is not suitable for all tasks! For example, given a large — Inaddition, we have discussed several other issues
weighted graph, how do you compute shortest paths, a minimum spanning — Consistency models
tree, the page rank of each node etc.? — Selfishness, game theory

Credits

e The Paxos algorithm is due to Lamport, 1998. Th a t,s a//’ fo /ks !

e The Chubby system is from Burrows, 2006. Questions & Comments?
e PBFT is from Castro and Liskov, 1999.

e Zyzyvva is from Kotla, Alvisi, Dahlin, Clement, and Wong, 2007.
e PeerReview is from Haeberlen, Kouznetsov, and Druschel, 2007.
e FARSITE is from Adya et al., 2002.

e Concurrent hashing and random trees have been proposed by Karger,
Lehman, Leighton, Levine, Lewin, and Panigrahy, 1997.

¢ The churn-resistent P2P System is due to Kuhn et al., 2005.

e Dynamo is from DeCandia et al., 2007.

¢ Selfish Caching is from Chun et al., 2004.

e Price of Anarchy is due to Koutsoupias and Papadimitriou, 1999.
¢ Second-price auction is by Vickrey, 1961.

¢ k-implementation is by Monderer and Tennenholtz, 2003.
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Weak Consistency

* We want to define clear rules, which reorderings are allowed, and which are not.

e Each operation o in execution E has a justification J,

— Sequence of other operations in E, such that the return value of o received in E equals the return value
that would be received when applying the operations in J to the initial state.

h write(1,5)

e For the previous example:
— Initial state of all objects is 0
— (Possible) justification for snapshot()
at client A: write(2), write(3)
— (Possible) justification for snapshot()
at client B: write(1)

0->0,1->5
2->0,3-0

e We can use constraints on J, to model different kinds of weak consistency

Weak Consistency: Release Consistency

Two special operations:
— read operation aquire
— write operation release

Execution E fullfils release consistency if there exists a total order <. on

all special operations and

spec

— For every operation o, the order of special operations in J, complies with <.,
— For every operation o, J, contains any acquire that occurs before o at the

same client

— For every operation o, if J; contains a release operation r and p is any
operation that occurs before r at the same client as r, then J, contains p
before r

— For every operation o, J, contains an operation g, and a ist an acquire that
occurs before g at the same client as g, then J, contains a before g

Weak Consistency: Release Consistency

¢ Idea: Acquire memory object before writing to it. Afterwards, release it.

¢ The application that runs within acquire and release constitutes a critical
region.

e A system provides release consistency, if all write operations by a node A
are seen by the other nodes after A releases the object and before the
other nodes acquire it.

¢ Java makes use of a conistency model similar to release consistency

Eventual Consistency

Special form of weak consistency

— If no new updates are made to the data object, eventually all accesses will
return the last updated value.

Allows for ,disconnected operation”
Requires some conflict resolution mechanism

Execution E is eventually consistent if there exist justifications J, and a
sequence of operations F, such that
— F contains exactly the same operation that occur in E

— For every prefix P of F, there exists a time t in E such that for every operation
o that occurs after t, the justification J, has P as a prefix.

Observe: F places operations in the order defined by conflict resolution,
and P denotes an ,agreed past” of all clients.




Variations of Eventual Consistency (Contd.)

e Causual Consistency

— If A has communicated to B that is has updated a data item, a subsequent
access by process B will return the updated value, and a write is guaranteed
to superseed the earlier write.

e Causal partial order o, < 0,: Information from o, can flow to o,.

¢ To have causal consistency it is required that:
— J, contains all operations that come before o in the causal partial order

— If g occurs within J,, and p < g in the causal partial order, then p occurs in J,
before g.
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Lowest-Price Auction

¢ Assume one peer v has volunteered
e vdoes not want to keep on caching

Idea: Pay another peer to cache the file.

— Hold an auction to make peers compete
for the job. Thus get a good deal.

— All peers place bids in private. Auctioneer
accepts lowest offer.

— vonly considers offers up to @ — w,.

¢ What should peer i bid?
- a—w;<b<a—-w,
- i does not know other peers’ bids

15
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Selfish Peers

e Peers may not try to destroy the system, instead they may try to benefit
from the system without contributing anything

e Such selfish behavior is called free riding or freeloading

e Free riding is a common problem in file sharing applications:

e Studies show that most users in the Gnutella network do not provide
anything
— Gnutella is accessed through clients such as BearShare, iMesh...

* Protocols that are supposed to be “incentive-compatible”, such as
BitTorrent, can also be exploited
— The BitThief client downloads without uploading! .

e Many techniques have been proposed to limit free riding behavior
— Source coding, shared history, virtual currency...
— These techniques are not covered in this lecture!




