In memory of

Alan M. Turing

R 3

Christoph Stamm | Roger Wattenhofer




Overview

e Greek Philosophers

e Augustus De Morgan
e George Boole

e Gottlob Frege

e Giuseppe Peano

e Alfred North Whitehead
e Bertrand Russell

e David Hilbert

e Wilhelm Ackermann
e Emil Leon Post

e Kurt Godel

e Alonzo Church

e Stephen Cole Kleene
e Alan Mathison Turing

Turing Machine
Church-Post-Turing Thesis
Decidability

Universal Turing Machine
Circle-free Turing Machines
Halting Problem

Undecidability of the
Entscheidungsproblem

P and NP
Turing Test

AT/2



Alan Mathison Turing

e 1912 -—1954, British mathematician

e one of the fathers of computer
science

e his computer model —
the Turing Machine — was
inspiration/premonition of the
electronic computer that came two
decades later

e during World War Il he worked on
breaking German cyphers,
particularly the Enigma machine.

e Invented the “Turing Test” used in
Artificial Intelligence

e Legacy: The Turing Award.
“Nobel prize” in computer science

AT/3



Alan Turing’s Academic Career

e 1931:King's College, University of
Cambridge, England
— Profs: Newman, Russell, Wittgenstein

— Interests

— group theory
— probability theory
— formal logic

— Thesis: proof of a main theorem in
statistics

e 1935: Fellow of King's College

— interests: Entscheidungsproblem
e 1936: PhD student in Princeton

— student of Alonzo Church

— equivalence of Turing machines and A-

Calculus

e 1945: National Physical Laboratory

— works on the design of the automatic
computing engine (stored-program
computer)

e 1948: Manchester University

— joined Max Newman’s Computing
Laboratory

— worked on software for Mark 1

— addressed the problem of artificial
intelligence (Turing Test)

— became interested in
mathematical biology

AT/A



Inference and Inductive Reasoning (Greek Philosophers)

e |Inference or deduction is the act or process of deriving logical conclusions
from premises known or assumed to be true.

e The process by which a conclusion is inferred from multiple observations
is called inductive reasoning.

e The conclusion may be correct or incorrect, or correct to within a certain
degree of accuracy, or correct in certain situations. Conclusions inferred
from multiple observations may be tested by additional observations.

e |nference Example
1. All men are mortal. [inductive reasoning]
2. Socratesis a man.
3. Therefore, Socrates is mortal.

e Big question: Can this process be automated?
— The laws of valid inference are studied in the field of logic.

— Are there other beings than men, which can draw logical
conclusions?




Formalization of Propositional Logic (19t Century)

e Augustus De Morgan (1806 — 1871)
— British mathematician and logician (Trinity College)
— “First Notions of Logic” (1840), De Morgan's laws
— “Formal Logic or The Calculus of Inference” (1847)

e George Boole (1815 — 1864)
— English mathematician, philosopher and logician
— “The Mathematical Analysis of Logic” (1847)
— “An Investigation of The Laws of Thought” (1854)

— algebraic system of logic = Boolean algebra

e Propositional Logic
(Propositional Calculus, Sentential Calculus)

— Examples
— proposition P: “it rains for an hour”

— proposition Q: “the ground is wet”
— satisfiable formulaF=P>Q=-PV Q
— valid formula G=-FVF

AT/6



Propositional Logic: Formal Definition and Syntax

e Definition: A propositional logic is a formal system

II=

(A, Q,Z,1).

A is a finite set of proposition variables (atoms), e.g. P, Q, ...

Q is a finite set of operator symbols, e.g. {L, T, -, V, A\, 2, <1

Z is a finite set of transformation (inference) rules, e.g. De Morgan’s laws.

I is a finite set of starting points, e.g. the logical formulas that are assumed to

be true without controversy (= axioms). Can be empty.

e Syntax: The language L of Il is the set of formulas. It is inductively defined
by the following rules:

base case: any element of A is a formula of L.

— inductive case: if P, are formulas and o € Q, then o(P,, P,, ..., P,) is a formula

AT/7



Propositional Logic: Semantic

e Semantic: A truth assignment is a function f: A x {false, true}.
— fsatisfies P € A if and only if f(P) = true

— for each m € Q the semantic defines under what conditions a ®—transformed
formula is satisfiable by f, e.g.
— 1 is never satisfied, T is always satisfied
— =Fis satisfied if and only if F is not satisfied
— (FV @) is satisfied if and only if at least one of either F or G are satisfied
— (F A G) is satisfied if and only if both F and G are satisfied
— (F = G) is satisfied if and only if it is not the case that F is satisfied but not G

e Semantic inference

— aset of formulas S semantically implies a formula G if all truth assignments f
that satisfy all the formulas in S also satisfy G

e Syntactic inference

— aset of formulas S syntactically implies a formula G if and only if we can derive
G from S with the inference rules Z in a finite number of steps

AT/8



Propositional Logic: Soundness and Completeness

e Soundness (Consistency)

— if the set of formulas S syntactically implies the
formula G, then S semantically implies G

— semantic inference is a necessary condition for
syntactic inference

e Completeness

— if the set of formulas S semantically implies the
formula G, then S syntactically implies G

— semantic inference is a sufficient condition for
syntactic inference

semantically implied
formulas

syntactically
implied
formulas

syntactically implied
formulas

semantically
implied
formulas

AT/9



Formalization of Second-order Logic (19" Century)

e Gottlob Frege (1848 —1925)

— German mathematician, logician and philosopher (Jena,
Gottingen)

— wanted to show that mathematics grows out of logic

— rigorous treatment of the ideas of functions and quantified
variables and sets

— “Begriffsschrift. Eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens.” (1879)

— “Grundgesetze der Arithmetik”, Band 2 (1903)

First-order logic is an extension of Second-order logic is an extension
propositional logic of first-order logic
* new elements: quantified variables, * new elements: variables that range
functions, predicates, relations over sets of individuals
 Example  Example
predicate P(a): “a is a philosopher” set P c Domain
predicate S(a): “a is a scholar” formula F = VP Vx: x€P V x&P

formula F = Va: P(a) = S(a)
formula G = -3a: P(a) A -S(a)
AT/10



Peano Axioms for Natural Numbers (1889)

e Giuseppe Peano (1858 — 1932)
— Italian mathematician (University of Turin)

e Peano Axioms: set of axioms for the natural numbers

— 1st: asserts the existence of at least one member of N

— 2"to 5%: general statements about equality

— 6% to 8t™: first-order statements about N expressing the
fundamental properties of the successor operation

— 9t: second-order statement of the principle of mathematical
induction over N

e Peano Arithmetic (in combination with the first eight axioms)
— Addition
Va:a+0=a
VaVb:a+S(b) =S(a+b)
— Multiplication
Va:a-0=0
VaVb:a-S(b)=a+(a:b)

AT/11



Mathematical Induction: Example

e Istaxiom:0 €N
e 27 axiom: Vx € N: (x = x)
e 6% axiom: Vx € N: S(x) EN

unary representation of N = {0, S(0), S(S(0)), S(S(S(0))), ... }

o 7thaxiom: Vx € N: =(S(x) = 0)
e 8thaxiom: Vx EN Vy e N : (S(x) =S(y)) > (x=y)
e 9t gxiom

let P be a unary predicate
(P(0) A Vn € N: P(n) = P(S(n)) ) > Vx € N : P(x)

e Example

let P(x) be ((x =0) V (3b : S(b) = x))
we want to show that P(x) is valid for all x € N
base case: P(0) = ((0=0) V (3b : S(b) = 0)) = (true V (Ib : S(b) = 0)) = true
inductive case: if Vn € N: P(n) is true then ¥n € N: P(S(n)) has to be true, too
P(S(n)) = ((S(n) =0) V (3b : S(b) =S(n))) = (false V (Ib : S(b) = S(n))) = (Tb : S(b) = S(n))
= (S(n) =S(n)) = (n = n) = true

AT/12



Russell’s Paradox (1901)

e Definition
— A paradox is a statement or group of statements that leads
to a contradiction

or a situation which (if true) defies logic
or reason, similar to circular reasoning.

e Examples
— “This statement is false.”

— “The following statement is false.
The previous statement is true.”

e Russell’s Paradox (1901)

— the same paradox has been discovered a year before by
Ernst Zermelo

— letR ={x|x € x},thenRER - R &R

AT/13



Bildergalerie
M. C. Escher
Lithographie, 1956

AT/14



Treppauf, Treppab
M. C. Escher
Lithographie, 1960

AT/15



Principia Mathematica PM (1913)

e Alfred North Whitehead (1861 — 1947)
— English mathematician and philosopher (Trinity College)
— co-author of “Principia Mathematica”

e Bertrand Russell (1872 — 1970)

— British philosopher, logician, mathematician, historian, and
social critic (Trinity College, Cambridge)

— Pupil of Whitehead at Trinity College, Cambridge
— shows that Frege’s work on logic led to paradoxes (1901)
— “The Principles of Mathematics” (1903)

— “Principia Mathematica” (1910 — 1913)
— three-volume work on the foundations of mathematics

— an attempt to derive all mathematical truths from a well-
defined set of axioms and inference rules in symbolic logic

— inspired by Hilbert’s 23 problems
— tries to avoid paradoxes by building an elaborate system of
types
e QOpen question: Is PM complete and consistent?

AT/16



Propositional Calculus of PM is Complete (1920s)

e Emil Leon Post (1897 — 1954)

— mathematician and logician (born in a Polish family,
immigrated to New York when he was a child)

— in his doctoral thesis, he proved that the propositional
calculus of PM is complete

— all tautologies are theorems, given the Principia axioms and
the rules of substitution and modus ponens

— he came very close to discovering the incompleteness of PM

— invented truth tables independently of Wittgenstein and
C.S. Peirce and put them to good mathematical use

— Formulation 1: mathematical model of computation that was
essentially equivalent to the Turing machine model (1936)

— the unsolvability of his Post correspondence problem turned

out to be exactly what was needed to obtain unsolvability
results in the theory of formal languages

ca

ab

ca

abc

AT/17



Hilbert’s Program (1918 — 1922)

e David Hilbert (1862 — 1943)

— German mathematician (Gottingen)

— recognized as one of the most influential and universal
mathematicians of the 19th and early 20th centuries

— discovered and developed a broad range of fundamental
ideas, e.g. Hilbert spaces, invariant theory and
the axiomatization of geometry

— «Naturerkennung der Logik» (1930)

e Hilbert’s 23 Problems (1900)
— No. 2: Prove that the axioms of arithmetic are consistent.

e Hilbert’s Program

— the main goal of Hilbert's program was to provide secure
foundations for all mathematics, in particular this includes:
— a formalization of all mathematics
— completeness
— consistency
— decidability
— conservation

AT/18


http://mcexcorcism.wordpress.com/2011/08/29/david-hilbert-naturerkennung-der-logik-1930/
http://mcexcorcism.wordpress.com/2011/08/29/david-hilbert-naturerkennung-der-logik-1930/
http://mcexcorcism.wordpress.com/2011/08/29/david-hilbert-naturerkennung-der-logik-1930/
http://mcexcorcism.wordpress.com/2011/08/29/david-hilbert-naturerkennung-der-logik-1930/

Entscheidungsproblem (1928)

e David Hilbert, Wilhelm Ackermann (1896 — 1962):
«Grundzuge der theoretischen Logik» (1928), Gottingen

«Das Entscheidungsproblem ist gelést, wenn man ein
Verfahren kennt, das bei einem vorgelegten logischen
Ausdruck durch endlich viele Operationen die Entscheidung
tiber die Allgemeingiiltigkeit bzw. Erfiillbarkeit erlaubt.»

— the Entscheidungsproblem asks for an algorithm that
takes as input a statement of a first-order logic

— and answers "Yes" or "No" according to whether the
statement is universally valid, i.e. valid in every structure
satisfying the axioms

— by the completeness theorem of first-order logic, a
statement is universally valid if and only if it can be
deduced from the axioms

— the Entscheidungsproblem can also be viewed as asking
for an algorithm to decide whether a given first-order
logic statement is provable from the axioms using the
rules of the first-order logic

AT/19



First-order Logic is Consistent and Complete (1930)

Kurt Godel (1906 — 1978)
— Austrian (vienna) American (Princeton) logician, mathematician
— «Uber die Vollstandigkeit des Logikkalkiils.» (1929), Diss.

Die Vollstindigkeit der Axiome des logischen
Funktionenkalkiils ).

Von Kurt Godel in Wien.

Whitehead wnd Russell haben bekanntlich die Logik und
Mathematik so aufgebaut, daB sie gewisse evidente Siitze als Axiome
an die Spitze stellten und ans diesen nach einigen genau formulierten
Schlubprinzipien auf rein formalem Wege (d. h. ohne weiter von der
Bedeutung der Symbole Gebrauch zu machen) die Sitze der Logik
und Mathematik deduzierten. Bei einem solchen Vorgehen erhebt sich
natiirlich sofort die Frage, ob das an die Spitze gestellte System
von Axiomen und SchluBprinzipien vollstiindig ist, d. h. wirklich
dazu ausreicht, jeden logisch-mathematischen Satz zu deduzieren.
oder ob vielleicht wahre (und nach anderen Prinzipien ev. auch
beweisbare) Sitze denkbar sind, welche in dem betreffenden System
nicht abgeleitet werden konnen., Fiir den Bereich der logischen
Awssageformeln ist diese Frage in positivem Sinn entschieden, d. h.
man hat gezeigt?), daB tatsiichlich jede richtice Aussageformel aus
den in den Principia Mathematica angegebenef Axiomen folgt. Hier
soll dasselbe fiir einen weiteren Bereich von Formeln, namlich fiir
die des ,engeren Funktionenkalkiils“%), geschehen, d. h, es soll gezeigt

Q‘ ()

AT/20



Incompleteness of Number Theory (1931)

e Monatshefte fir Mathematik 38, 1931

Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme I.
Yon Kurt Gidel in Wien.

1.

Die Entwicklung der Mathematik in der Richtung zn grilierer
Exaktheit hat bekanntlich dazn gefithrt, dal weite Gebiete von ihr
formalisiert wurden, in der Art, dab das Beweisen nach einigen
wenigen mechanischen Regeln vollzogen werden kann. Die umfas-
sendsten derzeit aufgestellten formalen Systeme sind das System der
Principia Mathematica (PM)?) einerseitz, das Zermelo-Fraenkel-
sche (von J.v. Nemmann weiter ausgebildets) Axiomensystem der
Mengenlehre?) andererseits. Diese beiden Systeme sind so weit, dall
alle heute in der Mathematik angcwendﬁtl:m Beweismethoden in ihnen
formalisiert, d. h. auf einige wenige Axiome wnd Schlufiregeln zuriick-
gefiihrt smd Es liegt daher die Vermutung nahe, dafl diese Axiome
und Sehlubiregeln dazn ansreichen, alle mathematischen Fragen, die
sich in den betreffenden ﬁj’st-:mm iiberhaupt formal ausdriicken
lassen, auch zu entscheiden. Im folgenden wird gezeigt, dab dies
nicht der Fall ist, sondern dal es in den beiden angefiihrten
Systemen sogar relativ einfache Probleme aus der Theorie der ge-
wihnlichen ganzen Zahlen gibt4),” die sich aus den Axiomen nicht
entscheiden lassen. Dieser Umstand liegt nicht etwa an der speziellen AT/21



http://en.wikipedia.org/wiki/File:Kurt_g%C3%B6del.jpg

Incompleteness of Number Theory (1931)

Jedes w-widerspruchsfreie System ist selbstverstindlich anch
widerspruchsfrei. Es gilt aber, wie spiiter gezeigt werden wird, nicht
das Umgekehrte.

Das allgemeine Resultat iiber die Existenz unentscheidbarer
Sitze lautet:

Satz VI: Zun jeder w-widerspruchsfreien rekursiven
Klasse » von Formeln gibt es rekursive Klassenzeichen r, so
dal weder » Gen r noch Neg (» Gen #) zu Flg (x) gehort (WDbEl
die freie Variable aus r ist). |

For any consistent recursive axiomatic system powerful
enough to describe the arithmetic of the natural
numbers (Peano arithmetic), there are true propositions
about the naturals that cannot be proved from the
axioms.

This theorem is a major step towards a solution of the
Entscheidungsproblem. However, there is still an open
point concerning the universal validity of a statement, i.e.
the validity in every structure satisfying the axioms.

AT/22


http://en.wikipedia.org/wiki/File:Kurt_g%C3%B6del.jpg

Incompleteness of Number Theory : Proof Sketch

e Godel's proof rested on the idea that statements about numbers could be
coded as numbers, and constructing a self-referential statement G
to defeat Hilbert's hopes.

e Formula G

— let G be the formula in PM with the interpretation: “G is not a statement in PM”

e |s G astatementin PM?
— if Gis a statement in PM, then -G is also a statement in PM : contradiction!

— if Gis not a statement in PM, then PM is consistent but incomplete, because G is
also a true formula

AT/23



Gddel Numbering

Godel numbering (GN)

— each formula in PM can be coded symbol by symbol into a unique natural

number (codon)

— each codon can be decoded back to its original formula

Example
— formula F: VYa:-S(a)=0
— GNf:626'262°6367223'123'362°262’323’111'666

I n»w o

—

666
123
111
362
323
262
223
626
636

AT/24



Formula G

e ProofPair(a,a’)

— aisthe GN of the entire deduction of statement A’ with GN a’
e Subst(a”,a,a’)

— a” and a’ are the GNs of A” and A’, respectively

— formula A’ is the result of a substitution of a free variable in formula A” by a
e SelfSubst(a’,a’) = Subst(a’,a”,a’)
e formula U with GN u

e -33,a’: ProofPair(a,a’) A SelfSubst(a’,a’)
e formula G

— -3a,a’: ProofPair(a,a’) A SelfSubst(“all a”’ substituted by number u” ,a’)
e |nterpretations of G

— There are no numbers a and a’, so that both form a PM proof pair, and that a’
is the self-substitution of u.

— There is no number a, which forms a PM proof pair together with the self-
substitution of u.

— The formula whose GN is the self-substitution of u, is not a statement in PM.
— Gis not a statement in PM. AT/25



PM: Completeness and Consistency

Principia Mathematica

Incomplete and consistent
\ or
complete and inconsistent

Number Theory

\

complete and consistent

AT/26



Entscheidungsproblem is Undecidable (1936)

e Alonzo S. Church (1903 — 1995)

American mathematician and logician (Princeton)

made major contributions to mathematical logic and the
foundations of theoretical computer science

best known for the lambda calculus

Church-Turing theorem: proving the undecidability of the
Entscheidungsproblem

Church-[Post]-Turing thesis

e Lambda Calculus

equivalent in capabilities to Turing machines
influenced functional programming, e.g. LISP

— C# and C++ provide lambda expressions

AT/27



Recursion Theory (Computability Theory)

e Stephen Cole Kleene (1909 — 1994)

— American mathematician who, distinguished students of
Alonzo Church

— best known as one of the founders of the recursion theory
(a branch of mathematical logic), together with Turing,
Post, and others

— concepts named after him: Kleene hierarchy, Kleene
algebra, the Kleene star (Kleene closure), Kleene's
recursion theorem and the Kleene fixpoint theorem

— invented regular expressions

e Recursion Theory

— is a branch of mathematical logic, of computer science, and
of the theory of computation

— originated in the 1930s with the study of computable
functions and Turing degrees

AT/28



On computable numbers ... (1936)

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurixG.

[Received 28 May, 1936.—Read 12 November, 1936.]

The “ecomputable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.

putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelf. These results

t Godel, * Uber formal unentscheidhare Sitze der Principia Mathemeatica und ver-
wandter Systeme, I, Meonwishefte Math., Phys., 38 (1831}, 173-193.

AT/29



Turing Machine (1936)

e A Turing Machine (TM) is a device with a finite amount of read-only
“hard” memory (states), and an unbounded amount of read/write tape-
memory. There is no separate input. Rather, the input is assumed to
reside on the tape at the time when the TM starts running.

e Just as with Automata, TM’s can either be input/output machines
(compare with Finite State Transducers), or yes/no decision machines.

ASTiuring Machine

In the Classic Style

By Mike Davey

AT/30


http://www.youtube.com/watch_popup?v=cYw2ewoO6c4&vq=medium
http://www.youtube.com/watch_popup?v=E3keLeMwfHY&vq=medium

Turing Machine: Example Program

e Sample Rules:

— Ifread 1, write O, go right, repeat.
— Ifread O, write 1, HALT!
— Ifread O, write 1, HALT! (the symbol o stands for the blank cell)

e Let's see how these rules are carried out on an input with the reverse
binary representation of 47:

- 1 1 1 0 1

AT/31



Turing Machine: Formal Definition

Definition: A Turing machine (TM) consists of a 7-tuple

M =

(QI ZI rl 8’ qOI qacc, qrej)'
Q, 2, and q,, are the same as for an FA.
dacc @nd g, are accept and reject states, respectively.

I' is the tape alphabet which necessarily contains the blank symbol o, as
well as the input alphabet 2.

O is as follows:
8:(Q {dy AP xT = Q@ xT x{L, R}

Therefore given a non-halt state p, and a tape symbol x, d(p,x) = (q,y,D)
means that TM goes into state g, replaces x by y, and the tape head moves
in direction D (left or right).

A string x is accepted by M if after being put on the tape with the
Turing machine head set to the left-most position, and letting M run, M
eventually enters the accept state. In this case w is an element of L(M)
— the language accepted by M.

AT/32



Church-Post-Turing Thesis (1936)

e First Goal of Turing’s Machine: A “computer” which is as powerful as any
real computer / programming language

As powerful as C, or “Java++”
Can execute all the same algorithms / code
Not as fast though (move the head left and right instead of RAM)

Historically: A model that can compute anything that a human can compute.
Before invention of electronic computers the term “computer” actually
referred to a person who's line of work is to calculate numerical quantities!

This is known as the [Church-[Post-]] Turing thesis, 1936.

e Second Goal of Turing’s Machine: And at the same time a model that is
simple enough to actually prove interesting epistemological results.

AT/33



Decidability

e A function is computable if there is an algorithm (according to the Church-
Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).

e Asubset T of aset Mis called decidable (or recursive), if the function
f: M =2 {true, false} with f(m) = true if m € T, is computable.

e A more general class are the | Input |
semi-decidable problems, for which
the algorithm must only terminate

in finite time in either the true or Algorithm 7

the false branch, but not the other. (Turing Machine)

AT/34



Computability Theory (Recursion Theory)

Predicates in Programming
Number Theory Languages

o

Sets

e primitive recursive: predictably finite running time
e LOOP: modern PL without if-then-else, while-loop, recursion

e WHILE: modern programs without endless loops
AT/35



Confluence of Ideas in 1936

e Alonzo Church: “A note on the Entscheidungsproblem”
— there is no solution for Hilbert’s Entscheidungsproblem

e Alonzo Church: “An unsolvable problem of elementary number theory”

— afunction fis effectively calculable iff f can be defined in the A-calculus

e Stephen Kleene: “A-definability and recursivness”

— afunction fis recursive iff f can be defined in the A-calculus

e Emil Post: “Finite combinatory processes”

introduction of a computational model, almost similar to Turing’s machine

e Alan Turing: “On computational numbers, with an application to the
Entscheidungsproblem”

there is no solution for Hilbert’s Entscheidungsproblem

a function fis computable iff f can be computed by a Turing machine
contains in three carefully distinct categories clear justifications for his model
introduces the concept of an interpreter (universal Turing machine)

computation time and memory requirements can be easily defined
(complexity classes)

AT/36



Universal Turing Machine

e Auniversal Turing machine (UTM) is a Turing machine that can simulate
an arbitrary Turing machine M on arbitrary input

e The UTM essentially achieves this by reading both the description of the
machine to be simulated as well as the input thereof from its own tape.

e |sthe origin of the stored program computer — used by John von
Neumann (1946) for the "Electronic Computing Instrument" that now
bears von Neumann's name: the von Neumann architecture.

HEAD
<+—r

P T
TAPE o N 7N 7N
\ | T T | T T \ i v [l T
. | i \
Code number of a Tuning machine M | Input to M Output
1 L}
| | l | | | | | | || i i
\ K 1 f’
Scanned
bol Current Current Current
Symoo state A: state B: state -
Table Of U Write Move Next Write Move Next ‘Write Move Next
Pr_int Sk Er,ase symbol tape  state symbol tape  state symbol tape  state
Left Right tape symbol is blank 1 R A 1 R P i R M
! tape symbol is 0 1 R B 0 L K 1 L N
tape symbol is 1 X R C E R H X N o
tape symbol is X 1 L D E N U 0 R P
tape symbol is ¥ 1 L E 1 R N ¥ R H
] etc.
Control unit

AT/37



Circle-free vs. Circular Turing Machines

e Definition
— aTMiis called circle-free if it only takes finite time to write down the next
symbol of a computable number; otherwise it is said to be circular

e Theorem

— Circle-Freeness is not decidable. (There is no TM which can decide if a given
number is the description of a circle-free TM.)

e Proof by contradiction

— assumption
— there exists a TM D(n), which can decide if a given number n is the description of a
circle-free TM
— construction of a circle-free machine M (combination of D and UTM)

— let b be the output of M

— M enumerates all naturals and checks each number i with D(i) for being the
description of a circle-free TM

— before testing number n, a certain number R(n — 1) of machines have been found
to be the description of circle-free TMs

AT/38



Circle-Freeness is not decidable: Proof (Cont.)

e construction

— in step n do:
if D(n) sais circle-free, then
R(n)=R(n—-1) + 1;
compute the first R(n) output symbols of machine n usinga UTM
append the R(n)-th output symbol to output b
else
R(n) =R(n-1)
e application of the diagonal process
— let k be the description of our machine M
— what happens in step k?
if D(k) sais circle-free, then
R(k)=R(k-1)+1
compute the first R(k) output symbols of machine k (our machine M) using a UTM,

but output b only contains R(k) — 1 valid output symbols, so the R(k)-th output
symbol would never be found, and therefore M is circular = contradiction

else D(k) sais circular
but M is by construction circle-free = contradiction

AT/39



Halting Problem

e The halting problem is a famous example of an undecidable
(semi-decidable) problem. Essentially, you cannot write a computer
program that decides whether another computer program ever
terminates (or has an infinite loop) on some given input.

e |n pseudo code, we would like to have:

procedure halting (program, 1input) {
if program(input) terminates
then return true
else return false



http://www.youtube.com/watch_popup?v=dhs04ofFJPI&vq=medium

Halting Problem Proof
e Now we write a little wrapper around our halting procedure

procedure test (program) {
if halting(program,program)
then loop forever
else return

l’;{a

e Now wesimply run: test (test) ! Does it halt?!?
— If halting(test,test) = true, test(test) should terminate, but it does not!
— If halting(test,test) = false, test(test) should not terminate, but it does!

e Wicked! Our (generic) halting procedure is wrong, no matter what!

e We have a contradiction. No halting procedure can exist.

AT/41


http://www.youtube.com/watch_popup?v=fsE1bFWXlJQ&vq=medium

O(t(n))

Problem Reduction Input / > Input /'
ProblemA| =—-=-=-====-=-- » | Problem B
. O(t(n)) . ,
Solution S,(/) < Solution S4(/')

e a quick way of solving problem A is
— to transform each instance of A into instances of the already solved problem B
— solve these using our existing solution
— use these solutions to obtain our final solution
e suppose we have a problem A that we've proven is hard to solve, and we
have a similar problem B
— we might suspect that B, too, is hard to solve
— we argue by contradiction: suppose B is easy to solve

— then, if we can show that every instance of A can be solved easily by
transforming it into instances of B and solving those, we have a contradiction

— this establishes that B is also hard to solve
AT/42



Undecidability of the Entscheidungsproblem

computable computable
T™MM » TM M » formula Un(M)
D 1 E 1 F 1
Is M D<nE Does M E<F Is Un(M)
circle-free? | —~ """ 7777 printa0? | -~~~ "~~~ °~ ”| provable?
l computable l computable l
yes/no < yes/no < yes/no

e “[..]ifthereis a machine E, then there is a general process for determining whether a given
machine M prints 0O infinitely often.”

e  “Similarly there is a general process for determining whether M prints 1 infinitely often. By a
combination of these processes we have a process for determining whether M prints an
infinity of figures, i.e. we have a process for determining whether M is circle-free. There can
therefore be no machine E.”

e  “Corresponding to each computing machine M we construct a formula Un(M) and we show
that, if there is a general method for determining whether Un(M) is provable, then there is a
general method for determining whether it ever prints 0, and this is impossible.”

e  “Hence the Entscheidungsproblem cannot be solved.”
AT/43



Complexity Classes: P and NP

e P isthe complexity class containing decision problems which can be
solved by a Turing machine in time polynomial of the input size.

e NP is the class of decision problems solvable by a non-deterministic
polynomial time Turing machine such that the machine answers "yes," if
at least one computation path accepts, and answers “no,” if all
computation paths reject.

— Quite similarly to the nondeterministic finite automaton from Chapter 1.

— Informally, there is a Turing machine which can check the correctness of an
answer in polynomial time.

— E.g. one can check in polynomial time whether a traveling salesperson path
connects n cities with less than a total distance d.

— Or one can check in polynomial time whether two big numbers are the factors
of an even bigger number (with n digits).

AT/44



P vs. NP

e An important notion in this context is the large set of NP-complete
decision problems, which is a subset of NP and might be informally
described as the "hardest" problems in NP. If there is a polynomial-time
algorithm for even one of them, then there is a polynomial-time algorithm
for all the problems in NP.

— E.g. Given a set of n integers, is there a non-empty subset which sums up to
0? This problem was shown to be NP-complete.

— Also the traveling salesperson problem is NP-complete, or Tetris, or
Minesweeper.

e One of the big questions in Math and CS: Is P = NP?
— Or are there problems which cannot be solved in polynomial time.
— Big practical impact (e.g. in Cryptography).

— One of the seven $1M problems by the Clay Mathematics Institute of
Cambridge, Massachusetts.

AT/A5



Turing Test (1950) E] @

e Definition: The Turing test is a test of a machine's ability
to exhibit intelligent behavior, equivalent to
or indistinguishable from, that of an actual human.

e originalillustrative example

— a human judge engages in a natural language conversation
with a human and a machine designed to generate
performance indistinguishable from that of a human being

— all participants are separated from one another

— if the judge cannot reliably tell the machine from the
human, the machine is said to have passed the test

e the test does not check the ability to give correct
answers

e it checks how closely the answers resemble typical
human answers

e the conversation is limited to a text-only channel such as
a computer keyboard and screen



http://www.youtube.com/watch_popup?v=ZZlRMsrOvB4&vq=medium
http://www.youtube.com/watch_popup?v=jq0ELhpKevY&vq=small

Bedtime Reading

If you're leaning towards “human = machine”

The o e
Emperorss
W New Mind?

With a New Preface by the Author
» # %

B

== N
: .
» . (3 "ié(‘ ‘.

ROGER PENROSE

GODEL,ESCHER,BACH:

If you’re leaning towards “human D machine”

2147



