
Distributed
 Computing

HS 2011 Prof. R. Wattenhofer / T. Langner, J. Seidel, J. Smula

Discrete Event Systems
Solution to Exercise Sheet 3

1 Finite Automata and Regular Languages [Exam]

a) We could use the systematic transformation scheme presented in the lecture (slide 1/75).
Considering the large number of states, however, this will easily lead to an explosion of
states in the derandomized automaton. Hence, we build the deterministic finite automaton
in a step-wise manner, only creating those states that are actually required: Initially,
the automaton requires a 0. Subsequently, only a 1 is accepted. Including the various
transitions, this 1 can lead to three different states, namely states 2, 3, and 4.

{1} {2, 4} {2, 3, 4}0 1

In any of the states 2, 3, and 4, only a 1 is accepted. Assume that the automaton is currently
in state 2, this 1 can lead to states {2, 3, 4} when including all ε-transitions. When in state
3, the 1 leads to states {2, 3, 4, 5} and finally, when being in state 4, the reachable states
given a 1 are {2, 3, 4}. Hence, a 1 leads from state {2, 3, 4} to state {2, 3, 4, 5}. Repeating
the same process for state {2, 3, 4, 5}, we can see that, again, only a 1 is accepted, which
leads to state {2, 3, 4, 5, 6}. Because the state 6 in the original NFA was an accepting state,
{2, 3, 4, 5, 6} is also accepting in the DFA. From state {2, 3, 4, 5, 6}, an additional 1 will lead
to another accepting state {1, 2, 3, 4, 5, 6}. And from this state, any subsequent 1 returns
to state {1, 2, 3, 4, 5, 6} as well.

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{2, 3, 4,
5, 6}

{1, 2, 3,
4, 5, 6}

0 1 1 1 1
1

What happens if a 0 occurs in the input? This is feasible only when the deterministic state
includes either state 1 or state 6. In state {2, 3, 4, 5, 6}, a 0 necessarily leads to state {4},
whereas in state {1, 2, 3, 4, 5, 6} a 0 leads to state {2, 4}. In both of these states, the only
acceptable input symbol is a 1 and leads to the state {2, 3, 4}. Hence, the deterministic
finite automaton looks like this:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{2, 3, 4,
5, 6}

{1, 2, 3,
4, 5, 6}

{4}

0 1 1 1 1

0

1

1

0

It can easily be seen, that first the states {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6} and then the states
{4}, {2, 4} can be merged and hence, the automaton can be reduced to the one shown in
the next figure.

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{1, 2, 3,
4, 5, 6}

0 1 1 1
1

0

This is not a DFA yet, because the crash state is still missing. The final deterministic
automaton looks like this:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{1, 2, 3,
4, 5, 6}

A

0

1

1

0

1

0

1

0

1

0

0,1

b) By studying the above automaton, it can be seen that the following regular language is
accepted: 01111∗(01111∗)∗ = (01111∗)+.

2 Pumping Lemma [Exam]

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length
p. Construct a suitable word w ∈ L with |w| ≥ p (“there exists w ∈ L”) and show that for
all divisions of w into three parts, w = xyz, with |x| ≥ 0, |y| ≥ 1, and |xy| ≤ p, there exists
a pumping exponent i ≥ 0 such that w′ = xyiz /∈ L. If this is the case, L is not regular.

a) Language L1 can be shown to be non-regular using the pumping lemma. Assume for
contradiction that L1 is regular and let p be the corresponding pumping length. Choose w
to be the word 0110p1p. Because w is an element of L1 and has length more than p, the
pumping lemma guarantees that w can be split into three parts, w = xyz, where |xy| ≤ p
and for any i ≥ 0, we have xyiz ∈ L1. In order to obtain the contradiction, we must prove
that for every possible partition into three parts w = xyz where |xy| ≤ p, the word w
cannot be pumped. We therefore consider the various cases.

2

(1) If y starts with any suffix of the first three symbols (i.e. 011) of w, the word w cannot
be pumped without violating either the constraints a = 1 or b = 2 (e.g. 01 01 1 0p 1p

for y = 01) or creating a word with an illegal structure (e.g. 011 011 0p 1p for y = 011).

(2) If y consists of only 0s from the second block, the word w′ = xyyz has more 0s than
1s in the last |w′| − 3 symbols and hence c 6= d.

Note that y cannot contain 1s from the second block because of the requirement |xy| ≤ p.

We have shown that for all possible divisions of w into three parts, the pumped word is
not in L1. Therefore, L1 cannot be regular and we have a contradiction.

b) With the adapted language L2, the proof of non-regularity is much more tricky! Specifically,
non-regularity of L2 cannot be proven using the pumping lemma, because any word in L2

can actually be pumped! Consider for instance a word w of the form 0110p1p. In this case,
we can split w into the three parts x = 0, y = 11, z = 0p1p, which is in accordance with the
rules of the pumping lemma. It can be seen, however, that any word xyiz is also in L2!
That is, the language L2 can be pumped and yet, it is not regular as shown below.

Assume for contradiction that there exists a finite automaton A which accepts the language
L2. Every word that starts with the input-sequence 0110 is only accepted if the remainder
of the word has the form 0c−1dc for some integer c > 0. Let q1 be the state reached after
the input 0110. Given the automaton A, we can construct a regular automaton A′ that is
equivalent to A with the only difference that its initial state is q1. By the definition of A,
this adapted finite automaton A′ accepts all words of the form 0c−1dc. However, as shown
on slide 1/95 of the script, the language 0c−1dc is not regular. Hence, A′ and thus A cannot
be finite automata. Because there exists a finite automaton for every regular language, it
follows that L2 cannot be regular. Language L2 shows that while every regular language
can be pumped according to the pumping lemma, there are also non-regular languages that
can be pumped.

Variant: We can alternatively use the fact that if two languages L and L′ are regular, the
language defined by the intersection of the two languages L ∩ L′ is regular as well (cf. p.
1/41). Consider the regular language L3 = {w ∈ 0110∗1∗}. Notice that the intersection of
L3 with L2 = {0a1b0c1d | a, b, c, d ≥ 0 and if a = 1 and b = 2 then c = d} contains exactly
all words w ∈ {0110n1n | n ≥ 0}. This, however, is the exact language L1 we proved not
to be regular in the first part of this exercise. If we assume L2 to be regular, L1 must be
regular as well, since L1 = L2 ∩ L3. This is a contradiction. Thus L2 cannot be regular.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only
works in the direction presented. That is, for an operator � ∈ {∪,∩, •}, we have:

If L1 and L2 are regular, then L = L1 � L2 is also regular.

If either L1 or L2 or both are non-regular, we cannot deduce the non-regularity of L or
vice-versa. Moreover, L being regular does not imply that L1 and L2 are regular as well.
This may sound counter-intuitive which is why we give examples for the three operators.

• L = L1 ∪ L2: Let L1 be any non-regular language and L2 its complement. Then
L = Σ∗ is regular.

• L = L1∩L2: Let L1 be any non-regular language and L2 its complement. Then L = ∅
is regular.

• L = L1 • L2: Let L1 = {a∗} (a regular language) and L2 = {ap | p is prime} (a
non-regular language) then L = {aaa∗} is regular.

Hence, to prove that a language Lx is non-regular, you assume it to be regular for contra-
diction. Then you combine it with a regular language Lr to obtain a language L = Lx �Lr.
If L is non-regular, Lx could not have been regular either.

3

3 Transforming Automata [Exam]

a) The regular expression can be obtained from the finite automaton using the transformation
presented in the script on slide 1/85. After ripping out state q2, the corresponding GNFA
looks like this:

s q1 q3 a
ε

1

01∗0

ε

11∗0

0

After also removing state q1, the GNFA looks as follows.

s q3 a
(01∗0)∗1 ε

0 ∪ 11∗0(01∗0)∗1

Eliminating the last state q3 yields the final solution, which is (01∗0)∗1(0∪11∗0(01∗0)∗1)∗.

Note: Ripping out the interior states in a different order yields a distinct yet equivalent
regular expression. The order q3, q2, q1, for example, results in ((0 ∪ 10∗1)1∗0)∗10∗.

b) The best way to solve this problem is to ask, which words are actually not in Φ(L). The
word 1, for instance must be in Φ(L), because the word 10 is in L. Moreover, the word 11
is in Φ(L), because 1101 is in L. Also, 10, 01, and 00 are in Φ(L) because of the words
1000, 0101, and 0010, respectively. More generally, it can be seen from every state in the
automaton and for all k ≥ 2, there is a sequence of k symbols that lead to the accepting
state. Hence, all words of length at least 2 are in Φ(L). Also, as seen before, the word 1
is in Φ(L). The only words that are not in Φ(L) are therefore 0 and ε: 0 is not in Φ(L),
because there is no word of length 2 in L starting with 0 that leads to an accepting state,
and ε is not in Φ(L), because ε /∈ L. With this, constructing the resulting DFA is now
easy.

1

0 0, 1

0, 1

4

