
Specification models and their analysis

Lecture 3: Timed Automata

Kai Lampka

December 20, 2010

1–18

Part I

Basics – What is a Timed Automata?

Timed Automata

Intuition:

A Timed Automaton (Alur & Dill 90) is a finite state machine equipped

with clocks running all at the same speed. Transitions (called edges)

between states (called locations) are activated/deactivated according to

the value currently held by each clock. When changing location (via

traversal of an activated edge) clocks are reset.

L1 L2

Location L1

Location L2

Edge e1:
if (x >= 2 && x <= 5) activated (guard)

reset x
else deactivated

if (x >= 1 && x <= 3 activated (guard)
Edge e2:

else deactivated
reset x

Ingredients of TA:

clocks and clock constants,

locations equipped with labels, and

edges equipped with labels, clock

constraints (guards) and clock resets.

3–18

Timed Automata Clock Constraints

L1 L2

guard: x >= 2 && x <= 5

reset: x

reset: x

guard: x >= 1 && x <= 3

Atomic clock constraints:

An atomic clock constraint ga has to

be of the form ga := x ./ k, where

./∈ {<,≤, >,≥,=} and x is a clock

and k ∈ N0 a (clock) constant.

CC denotes the set of atomic clock

constraints of a TA.

E.g.
CC := {x ≤ 1, x ≤ 2, x ≤ 3, x ≤ 5}

A complex clock constraint gc of a TA is constructed by the

following grammar:
gc := ga ∈ CC|gc ∧ gc |¬gc

A clock valuation is a function µ : C → R+ which assigns a

real-valued number to a clock yielding the respective satisfaction

relation for clocks, and atomic, resp. complex clock constraints:

x < k |= true ⇔ µx < k, etc.
4–18

Timed Automata Formal Definition

A TA is a tuple (Loc, l0, Act, C, ↪→, Inv , L), where

Loc is the finite set of locations, with location l0 is initial one.

Act is a set of event-labels.

C is a finite set of real-valued clocks.

Inv : Loc → CC

L : Loc → Λ is a mapping that assigns labels to locations.

↪→⊆ Loc × CC(C)×Act × 2C × Loc is an edge relation.

guard: x >= 2 && x <= 5

reset: x

reset: x

guard: x >= 1 && x <= 3

[x <= 3]

[x <= 5]
L1 L2

work sleep

Loc = {L1, L2}, l0 := L1,

Act := {e1, e2} C := {x}

CC := {x ≤ 1, x ≤ 2, x ≤ 3, x ≤ 5}

Inv : {L1 → (x ≤ 5); L2 → (x ≤ 3)}

L := {L1 → work; L2 → sleep}

↪→:= { e1→,
e2→}

5–18

Remarks:

Edge relation: Elements of this relation are directed edges

connecting pairs of locations. Commonly an edge carries a clock

constraint gc ∈ CC. The edge-specific constraints, also denoted as

guards, must evaluate to true once the edge should be traversed; in

such cases we say that the respective edge is enabled. The power set

2C in the above definition refers to the fact that upon edge traversal

a subset of clocks is reset to zero and clocks outside this subset

maintain their values.

Reset of clocks upon edge traversals: With µ : C → R+ we refer

to real-valued clock evaluations. Notation µ′ = [R → 0]µ denotes

that the clocks of set R ⊆ C are set to 0, and the remaining ones

(C \ D) maintain their values.

6–18

Timed Automata

How do we interpret a TA?

L1 L2

guard: x >= 2 && x <= 5

reset: x

reset: x

guard: x >= 1 && x <= 3

Note: Activated edges can be ex-

ecuted, i. e., they do not have to

be executed!

7–18

Timed Automata

How do we interpret a TA?

L1 L2

guard: x >= 2 && x <= 5

reset: x

reset: x

guard: x >= 1 && x <= 3

Note: Activated edges can be ex-

ecuted, i. e., they do not have to

be executed!

For enforcing behavior we employ

location invariants. This are clock

constraints defined for locations.
L1 L2

guard: x >= 2 && x <= 5

reset: x

reset: x

guard: x >= 1 && x <= 3

[x <= 3]

[x <= 5]

8–18

Timed Automata

How do we interpret a TA?

L1 L2

guard: x >= 2 && x <= 5

reset: x

reset: x

guard: x >= 1 && x <= 3

1 Progress of time (delay transitions) : we are allowed to increase the

values of the clocks, as long as no location invariant is violated.

2 Location change (discrete transitions): An enabled edge can be

traversed at any time, i. e., as long as it guards evaluated to true and

the invariants of the target location(s) are satisfied. When changing

locations some clocks might be reset, i. e., they evaluate to 0 right

after.
9–18

Timed Automata

L1 L2

guard: x >= 2 && x <= 5

reset: x

reset: x

guard: x >= 1 && x <= 3

L2 active

L1 active e1 enabled

e2 enabled

time

x = 1.0

x = 0.0

x = 1.0

x = 2.0

x = 2.0

L2

L1

reset x
x = 3.1

e1 executed

e2 executed

x = 2.4
reset x

x = 4.50918
reset x

10–18

Timed Automata: Operational semantic

Remark: State layout:

Let a state of a TA be the tuple 〈l , µ, 〉 where l is the currently

active location, and

µ is a valuation of all clocks.

Delay transition (progress of time):

empty

〈l , µ〉 δ−→〈l , µ+ δ〉

(
δ, δ′ ∈ R+ with 0 ≤ δ′ ≤ δand

l : µ+ δ′ |= Inv(l)

)

Informal: One may advance the clock values as long as the location in-

variants of the active locations are satisfied at all time up to the new time

µ+ δ.

11–18

Timed Automata: Operational semantic

Discrete transitions (location change):

(
li

Ga,a,R
↪−→ lk

)
∈ TA

〈l , µ〉 a−→〈l ′, µ′〉

li contained in l (1)

µ |= Ga, (2)

µ′ = [R → 0]µ, (3)

l ′ : µ′ |= Inv(l ′) (4)

Informal: The side conditions from above refer to the fact that an edge

is enabled. Informally this means: edge a is enabled in a state 〈l , µ〉 if its

preceding location li is marked active (cond. (1)), the clock evaluation µ

satisfy the clock constraints (guard) Ga (cond. (2)), the successor state

〈l ′, µ′〉 contains the clock resets of the clocks of R (cond. (3)), and the

invariants of newly activated locations (l ′) hold for µ′ (cond. (4)) .

12–18

Timed Automata
L2 active

L1 active e1 enabled

e2 enabled

time

x = 1.0

x = 0.0

x = 1.0

x = 2.0

x = 2.0

L2

L1

reset x
x = 3.1

e1 executed

e2 executed

x = 2.4
reset x

x = 4.50918
reset x

〈L1, 0〉
3.1−→〈L1, 3.1〉

e1−→〈L2, 0〉
2.4−→〈L2, 2.4〉

e1−→〈L1, 0〉 · · ·

where such a sequence is called execution trace.

With positive guard-clock-evaluations from dense intervals [a, b] one may

construct infinitely many system states, here all states of the kind

〈L1, x ∈ Ix〉 and 〈L2, x ∈ Ix)〉, where Ix = [0,∞) (Why up to ∞?)

13–18

Timed Automata

A TA can be expanded into a finite transition system, denoted as

region graph.

The region graph is a symbolic representation of a TA’s behavior;

symbolic means that it does not consists of individual system states

〈L, time stamp〉, but groups these states into finitely many

representatives, i. e., equivalence classes.

As the region graph is finite and a complete representation of a TA

behavior timed CTL-model checking on TA is decidable.

In this lecture we will not elaborate on these very sophisticated details.

14–18

Summary

15–18

Part II

Stating Properties

Stating properties: Queries

There exists a timed version of CTL, but this will not be part of this

lecture. We simply employ reachability queries as known from CTL,

where we stick to the syntax of the Uppaal timed model checker:

1 Possibly p: The statement E <> p evaluates to true for a timed

transition system of a TA T iff there is a path

Π(s0) := s0
τ→ s1

τ→ . . . sn, of alternated delay and action transitions

where system configuration sn satisfies state property p. E.g.

T |= E <> (buffer > B) is true iff we reach a system configuration

where variable buffer is larger than constant B.

2 Invariantly p: The statement A[]p evaluates to true iff every

reachable state as contained in the timed transition system of a TA

T satisfy state property p. E.g. T |= A[](buffer < B) is true iff in

all system configurations variable buffer is smaller than constant B.

17–18

Stating properties: Observers

With so called observer TA and a respective reachability query one may

validated complex properties of a modelled system.

Observer:

An observer is a TA which is executed in parallel for flagging the validity or

violation of a property. By explicitly exploiting the non-deterministic choice

between edge execution one is enabled to validate complex properties.

−→ Example 2.1: Observer

18–18

	Basics – What is a Timed Automata?
	Stating Properties

