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Preliminary Remark

In the following we will develop a mechanical view of propositional

logic allowing to mechanical interpret formulae of propositional logic.

This might appear long-winded. But, remember what we need is a

formalized apparatus for mechanically (= done by a machine)

interfere validity of statements about a computer system.

This elegant style will furthermore allow us to define how to

interpret CTL-formulae over Kripke structures.
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Part I

Preliminaries: Propositional Logic

Excursion: Propositional Logic

Let AP be a set of atomic propositions, e. g. the sun shines, it is

raining, etc. ..

The atomic propositions are either wrong or false, unlike the

variables employed in logic of circuits (Schaltungslogik) which can

be 0 or 1.

Let true be a constant, 0-ary operator denoted as true.

Let ∧ be a binary operator denoted as conjunction.

Let ∨ be a binary operator denoted as disjunction.

Let ¬ be the unary operator denoted negation.

Syntactically correct formulae of propositional logic are defined by

the following grammar:

A ::= true | α ∈ AP | ¬A | A ∧ A | (A) | A ∨ A

The grey colored parts are not essential, we use them here for convenience.
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Propositional Logic

Let µ : AP ∪ {true} → {1, 0} be an assignment for the atomic

proposition, s.t. ∀α ∈ AP: µ(α) = 1 or µ(α) = 0 holds. The

terminal symbol true is always mapped to 1.

Let F be the set of all formulae which can be constructed according

to the above production rule and which solely uses the terminal

symbols of AP.

Let µ̃ : F → {1, 0} be now an evaluation of each formulae contained

in F , where we say that C ∈ F is true if µ̃(C ) = 1 otherwise we say

C is false. We use here 0 and 1 instead of true and false for clearly

separating the syntactical level from the level of interpretation.

Given the evaluation of atomic proposition and complex formulae over AP
we can now define how µ̃ operates, which fixes the way how formulae of

the above kind have to be interpreted. For convenience we do this by

defining a binary relation |=⊂ µ×F denoted as satisfaction relation.
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Satisfaction Relation Preliminaries

Let |=⊆ µ×F be the binary relation where for any formula C and a

matching assignment µ holds that

(µ,C ) ∈|= if and only if µ̃(C ) = 1

The elements of |= are those formulae which posses a fulfilling

assignment µ to the atomic propositions of the formula C .

Simplification:

Each time µ̃ is applied to an atomic proposition α ∈ AP it returns

the value µ defined for α, i. e., 1 or 0.

Thus assignment µ and evaluation µ̃ agree on the elements of AP.

This allows us to drop the distinction between atomic proposition

and formulae and solely employ evaluation µ.
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Satisfaction relation Definition

For interpreting formulae of propositional logic we need now to make the

following distinction w. r. t. satisfaction relation |=.

1 Interpretation of the terminal symbolic true: (µ, true) ∈|= per

definition. The constant true-function evaluates to true for every

assignment (“true is true, no matter what”).

2 Interpretation of atomic propositions:

α ∈ AP: (µ, α) ∈|= if and only if µ : α 7→ 1 holds.

3 Interpretation of negation:

(µ,¬A) ∈|= if and only if (µ,A) 6∈|= holds.

4 Interpretation of conjunction:

(µ,A ∧ B) ∈|= if and only if (µ,A) ∈|= and (µ,B) ∈|= holds.

5 Interpretation of disjunction:

(µ,A ∨ B) ∈|= if and only if one of the following holds:

(a) (µ,A) ∈|= and (µ,B) 6∈|=; (b) (µ,A) 6∈|=, and (µ,B) ∈|=;

(c) (µ,A) ∈|= and (µ,B) ∈|=.
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Satisfaction relation Remarks

The above rules can be recursively applied until one reaches base

case (1) or (2), hence the satisfaction relation defines how formulae

of propositional logic can be interpreted, we say it defines a semantic

of propositional logic.

In case (µ,C ) ∈|= one also says that µ is a model for C . In case

there is no model satisfying ¬C formula C is called a tautology and

in case C has at least one valid model it is called satisfiable.

In the following we write µ |= C instead of (µ,C ) ∈|= and we write

µ 6|= C instead of (µ,C ) 6∈|=.
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Satisfaction relation Remarks

In the following we use logic implication. This operator is defined as

follows:

µ |= (A⇒ B) if and only if µ |= ¬A ∨ B holds.

Operator ∨ is defined as before. An implication which is based on a

false formulae (or statement), here A is always true; “from rubbish

you can interfere everything”.

This allows us now to define an operator for the formulation if and

only if, where one commonly uses the symbol ⇔, respectively iff:

µ |= A⇔ B if µ |= (A⇒ B) ∧ (B ⇒ A) holds.
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How to evaluate complex formulae of propositional logic

A parse tree is an (ordered, rooted) tree that represents the syntactic

structure of a string according to some formal grammar. In a parse tree,

the interior nodes are labelled by non-terminals of the grammar, while the

leaf nodes are label-ed by terminals of the grammar.

1 Take formula C and convert it s.t. it only contains the basic

operators ¬, ∧ or ∨.

2 Generate a parse tree for the formula s.t. the leaves of the parse tree

carry the atomic propositions or the constant true and each inner

node carries an operator of {¬,∧,∨};
3 evaluate the atomic propositions at the leave nodes by defining

µ : AP → {1, 0}; µ(true) = 1 is determined.

4 process the parse tree bottom-up, and label each inner node with

the respective 0 or 1 value.

5 When arriving at the root node the interpretation of C w. r. t. model

µ has been achieved.
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Decidability

A true/false-question is decidable iff there is an algorithm which

after finitely many steps returns with either true or false.

If a true/false-question is semi-decidable the computation may not

be finished after finitely many steps (= the algorithm runs forever).

In fact, propositional logic is decidable, as all formulae over finitely

many variables can be evaluated to 1 or 0. Does this really hold for

formulae of infinite length?

However, not all theories are decidable, i. e., not for all theories it is

possible to mechanically carry out proofs.
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Decidability

Most celebrated result in theoretical computer science are Goedel’s

incompleteness theorems (from wikipedia):

1 The first incompleteness theorem states that no consistent system of

axioms whose theorems can be listed by an “effective procedure”

(essentially, a computer program) is capable of proving all facts

about the natural numbers. For any such system, there will always

be statements about the natural numbers that are true, but that are

unprovable within the system.

2 The second incompleteness theorem shows that if such a system is

also capable of proving certain basic facts about the natural

numbers, then one particular arithmetic truth the system cannot

prove is the consistency of the system itself.
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Semi-decidability of first-order logics for formulating statements about

natural numbers (= propositional logic enriched with predicates,

functions, and exists and all quantifiers). This result implies that there are

no fully automatic proof producing machines for theories of a certain

complexity. In fact Goedel showed that the theory of arithmetic formulae

is already undecidable.

Intuition Consider the following formula:

F := ∀x ∈ D : x < x + 1 ∧ ∀y ∈ D : ¬(y < y)

∧(∀u∀v∀w) ∈ D : ((u < v) ∧ (v < w))⇒ u < w

This formula is true only for infinite domains D such as N, thus

it is impossible to (mechanically) construct a model in finitely

many steps s.t. the above formula is correct.

Besides propositional logic, there are other decidable theories,

e. g. Pressburger arithmetics (= 1’st-order theory on N with + and = and

induction as proof scheme). But, Pressburger arithmetics already

extended with multiplication (= Peano arithmetics), is undecidable, which

is the system Goedel originally dealt with.
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Part II

Introduction

Introduction to CTL Model Checking: Preliminaries

In (formal) logic one studies how to combine propositional formulae

consisting of atomic propositions, manipulate the formulae, and

ultimately draw correct conclusions, i. e., decide if a (complex)

formula (= combination of statements) is correct or not.

This requires a decidable theory and a set of ”mechanical” methods

for showing that a complex statement about a system model is

correct. Actually we show that a system model, here a Kripke

structure, is a valid model of a complex statement, here a

CTL-formulae.
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Introduction to CTL: Kripke structure

We extend the notion of Labelled Transition Systems as follows:

Definition 2.1: Kripke structure

A Kripke structure K is a six-tuple K := (S, S0,Act,E,AP,L), where

1 S := {~s1, . . . ,~sn} is an ordered (indexed) set of states with

2 S0 is the set of initial states.

3 Act is the discrete set of transition labels,

4 E ⊆ S×Act × S is an ordered (indexed) set of labelled state-to-state

transitions.

5 AP is a set of atomic propositions, e. g. {green, blue, yellow , black} and

6 L : S 7→ 2AP as state labelling function.
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Introduction to CTL Model checking

Analogously to propositional logic one wants to reveal if a formal

statement about a system’s behavior is correct or not.

Whereas in propositional logics this is easy, –one simply needs to

evaluate a formulae w. r. t. an assignment µ–, the reasoning about

Kripke structures is much more demanding.

However, at first we need to clarify how a Kripke structure defines a

system behavior.
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Introduction to CTL Model checking

Analogously to propositional logic one wants to reveal if a formal

statement about a system’s behavior is correct or not.

Whereas in propositional logics this is easy, –one simply needs to

evaluate a formulae w. r. t. an assignment µ–, the reasoning about

Kripke structures is much more demanding.
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Introduction to CTL Model checking
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Introduction to CTL: Paths
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System is given as Kripke structure, hence future

behavior is defined by sequences of states denoted as

path.

for any pair of states within a path we require that

there is a connecting edge within the Kripke structure:

π~s0
:= ~s0,~s1,~s2,~s4,~s0,~s1 (finite path fragment)

in fact we are interested in the sequence of atomic

propositions attached to each state (L(~si )), but for

simplicity we stick to the state identifiers ~si
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Introduction to CTL: Branching time view

As we see from this:

temporal logics which are the logics on transition systems are time

abstract, i. e., they allow to reason about ordering of states. They do

not allow to reason about state residence times!

The modelling and reasoning about real-time systems is denoted

timed verification.

Hence one reasons over system behaviors which are defined by paths

in the Kripke structure.

This allows one to make statements over a single path (= linear

time view), or over sets of paths (= branching time view).

CTL follows the branching time view, hence it allows to make

statements about set of paths, like ∃ a path s.t. , ∀ paths it holds: ...
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Introduction to CTL Model Checking: Branching time view

To reason about the properties of a system (model) in a branching

time view one must expand all paths (= all possible behaviors),

starting at the initial state.

For simplicity we are considering in the following only Kripke

structures

with a single initial state (~s0), s.t. we only need to worry about paths

starting in state ~s0.

which are non-terminal (i. e., there are no deadlocks),

−→ Question 2.1: What do we get if we unroll all paths of a Kripke structure,

transition by transition starting at the initial state
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Introduction to CTL Model Checking: Constructing a CT

The computation tree (CT) of a Kripke structure

K := (S,S0,Act,E,AP,L) can be constructed as follows:

each node of the CT carries a state label contained in S;

the root of the CT is labelled with the state label ~s0;

each child of a CT-node c is labelled with a state-label ~s

each children node is a successor of its parent node w. r. t. the

associated state descriptors and the transition relation of K.

For the set of children nodes of a CT-node c we have:

child(c) :=
⋃

∀l∈Act:(~s,l,~t)∈E

~t

Since each node of the CT carries a state label ~s, it can be

annotated with the set of atomic propositions which are actually

fulfilled by the resp. state ~s, i. e., with L(~s).
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Part III

Model Checking with CTL



CTL Model Checking: Defining CTL

CTL has the following ingredients:

1 atomic propositions, where a state ~s satisfies a atomic proposition

a ∈ AP if it carries the respective label (L(~s) = a)

2 standard logic operators ∧,¬ and their derivatives, e. g. ⇒, which

allow to construct more complex state formulae;

−→ Example 3.1: a⇒ ¬(c ∨ b)

3 quantifiers ∃ and ∀ applied to path formulae, i. e., sequences of state

properties to be fulfilled w. r. t. some starting state ~s0.

−→ Example 3.2: ∃Ψ, ∀Ψ

4 temporal operators © (= next) and U (= until) which we apply to

state formulae and which gives us path formulae;

−→ Example 3.3: Ψ := © b Ψ′ := aU b
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CTL Model Checking: Defining CTL

Definition 3.1: Computation Tree Logic

CTL formula consists of sub-formulae which are either path

formulae (Ψ) or state formulae (φ). With a ∈ AP as set of atomic

propositions we give the following definitions:

A CTL state formula φ is defined as

φ := true | a ∈ AP |φ ∧ φ | ¬φ | ∃Ψ | ∀Ψ

. with Ψ as CTL path formula

A CTL path formula Ψ is defined as

Ψ := ©φ | φUφ′

where the φ’s are CTL state formulae.
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CTL Model Checking: Syntax

Consider the following CTL formulae with {coin,wash} =: AP
∃© coin

∀(true U wash)

∃(coin ∧ ∀©wash)

∃© (coin ∧ ∀©wash)

1 Which of the above formulae are syntactically correct?

2 How does a non-trivial fulfilling CT could look like?
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CTL Model Checking: Semantics

As for propositional logics we define a satisfaction relation |= for

CTL-formulae:

Definition 3.2: Semantics of CTL

1 For a Kripke structure K and a state ~s we define the following:

~s |= a⇔ a ∈ L(~s)

~s |= ¬φ⇔ ~s 6|= φ

~s |= φ ∧ φ′ ⇔ ~s |= φ ∧~s |= φ′

~s |= ∃Ψ⇔ π~s |= Ψ for some path π~s in K
~s |= ∀Ψ⇔ π~s |= Ψ for all paths π~s in K

2 For a path π~s in K we define:

π~s |= ©φ⇔ π~s [1] |= φ

π~s |= φUφ′

⇔ ∃j ≥ 0 : π~s [j ] |= φ′ ∧ ∀(k : 0 ≤ k < j) : π~s [k] |= φ,

where π~s [x ] refers to the x ’th state of path π~s .
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The model checking procedure: Normal form

However complex CTL-formulae might also contain non-standard

operators, e. g. a⇒ ¬(c ∨ b).

For reducing the number of cases to be covered

(true, a ∈ AP,∧,¬,∀© ,∃© ,∀U ,∃U ), as well as for simplifying

their treatment each CTL-formula is converted into a normal form

In the following we will make use of the so called existential normal

form (ENF) which solely employs the operators ¬,∧,∃© ,∃U and

∃� where � is the always operator.

Definition 3.3: The always operator (�)

potentially always: ∃�φ := ¬∀(true U¬φ)

there is (at least one) path π s.t. φ holds in each state of π.

invariant: ∀�φ := ¬∃(true U¬φ)

for all paths Π and hence all states φ holds

−→ Example 3.4: Example for the �-operator
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The model checking procedure: Normal form

Definition 3.4: Existential normal form

A CTL-formula is in existential normal form (ENF) if it is of the following

type:
φ := true | a ∈ AP | φ ∧ φ | ¬φ | ∃©φ | ∃(φUφ) | ∃�φ

For converting a CTL formula in ENF one needs to replace the universal

by the existential quantifier. This is possible by exploiting the following

dualities:

∀©φ = ¬∃©¬φ
∀(φ′ Uφ′′) = ¬∃ [¬φ′′ U (¬φ′ ∧ ¬φ′′)] ∧ ¬∃�¬φ′′

Thus for deciding if a system L complies with a property a resp. model

checking algorithm must only cover the above 7 ENF-base cases.
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CTL Model Checking: Semantics

For actually model checking a LTS L we need to extend the above

defined satisfaction relation to transition systems (we also do not

want to expand the CT explicitly).

Let Ω be a CTL-formula and let L be a finite non-terminal LTS

L |= Ω⇔ ~s0 |= Ω

This gives the outline of the CTL model checking procedure:

1 Construct Satisfy(Ω) which is the set of states for which a given

CTL-formula Ω holds and which we therefore define as follows:

Satisfy(Ω) := {~s ∈ S | ~s |= Ω}

2 Check if the initial state of L is contained in this set, since

L |= Ω⇔ ~s0 ∈ Satisfy(Ω)

How to compute the set Satisfy is of major concern now.
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The model checking procedure: Overview

Preliminary: take CTL-formula and convert it into ENF and provide state

labellings for LTS w. r. t. the atomic propositions of the CTL formula.

1 generate a parse tree for the CTL formula s.t. the leaves of the parse

tree carry atomic propositions or the constant true

2 construct Satisfy(Ω) by processing the parse tree bottom-up,

i. e., one computes the satisfaction sets of the leave nodes then for

their parent nodes and so on and on ...

3 check if the initial state is contained in the satisfaction set

Satisfy(Ω)
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The model checking procedure: Parse Tree

Definition 3.5: Parse Tree

Given a CTL-formula Ω we construct a parse tree s.t.

a leaf of the parse tree carries an atomic proposition or the constant

true as occurring in a sub-formulae of the CTL-formula to be parsed

the inner nodes carry combined operators as employed for connecting

different state formulae, i. e., op ∈ {¬,∧,∀© ,∃© ,∀U ,∃U }.

−→ Example 3.5: Parse tree for ∃© a ∧ ∃(b U [¬∀(true U¬c)]
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Model checking procedure: Base cases

(I) What do we need to do for the leaves of the parse tree,

i. e., . how do we compute Satisfy(φ) for φ := true |a ∈ AP?

1 φ = true

this set contains all states, since all states are satisfying the constant

true formula, i. e., we have

Satisfy(φ) := Satisfy(true) := S

2 φ ∈ AP
we collect all states labelled with φ, i. e.,

Satisfy(φ) := {~s ∈ S | L(~s) = φ}
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Model checking procedure: Base cases

(II) What do we need to do for the inner nodes of the parse tree?

1 Simple case covering the computation of Satisfy(φ) for

φ := ¬ρ |ρ′ ∧ ρ′′ |∃© ρ

φ = ¬ρ: Satisfy(φ) is the complement of Satisfy(ρ) w. r. t. S

Satisfy(φ) := S \ Satisfy(ρ)

φ = ρ′ ∧ ρ′′: Satisfy(φ) is the intersection of the satisfaction sets

of ρ′ and ρ′′:

Satisfy(φ) := Satisfy(ρ′) ∩ Satisfy(ρ′′)

φ = ∃© ρ: Satisfy(φ) are all those states which predecessors

satisfy ρ, i. e.,

Satisfy(φ) := {~s ∈ S | Post(~s) ∩ Satisfy(ρ) 6= ∅}

−→ Example 3.6: Satisfy(∃© ρ)
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Model checking procedure: Base cases

(II) Handling of inner nodes of the parse tree (continued).

2 Complex case requires fixed point computation for obtaining

Satisfy(φ) in case

φ := ρ′ U ρ′′ |∃�ρ

φ = ∃(ρ′ U ρ′′):

Satisfy 0(φ) := Satisfy(ρ′′)

Satisfy i+1(φ) := Satisfy i (φ) ∪
{~s ∈ Satisfy(ρ′) | Post(~s) ∩ Satisfy i (φ) 6= ∅}

φ = ∃�ρ:

Satisfy 0(φ) := Satisfy(ρ)

Satisfy i+1(φ) := {~s ∈ Satisfy i (ρ) | Post(~s) ∩ Satisfy i (φ) 6= ∅}

−→ Example 3.7: Model Checking of “weather” LTS
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Concluding Remarks: Witnesses and Counter examples

1 Witnesses and counter examples:

path demonstrating L |=φ is denoted witnesses

path demonstrating L 6|= φ is denoted counter example.

2 A last operator (eventually):

Definition 3.6: The eventually operator (♦)

potentially: ∃♦φ := ∃(true Uφ)

at least one path π goes at least through one state where φ holds.

inevitable: ∀♦φ := ∀(true Uφ)

all paths go at least through one state there φ holds.
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Summary
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