





HS 2010

Prof. R. Wattenhofer / J. Smula, T. Langner

# Discrete Event Systems

Solution to Exercise Sheet 8

## 1 Colour Blindness/Daltonism

Since the sample size n is large and the probability for someone being colour blind is small, we can estimate the distribution of colour blind people with the Poisson distribution.

#### The Poisson distribution

The Poisson distribution is a *discrete* probability distribution which is applied often to approximate the binomial distribution for large number n of repetitions and small success probability p of the underlying Bernoulli experiments. Usually, it is used to model situations where stochastical events happen with a given rate in a given quantity. If we know that an event on average happens once within the quantity  $q_1$  and we are interested in the number of events X in another quantity  $q_2$ , then X is Poisson-distributed with parameter  $\lambda = q_2/q_1$ .

$$\Pr[X = x] = \frac{\lambda^x}{x!} e^{-\lambda}$$

a) The average rate of colour blind people is 2 out of 100 or one blind person in 50, hence we have  $q_1 = 50$ . We are interested in the number X of colour blind persons in a sample of 100 persons, hence  $q_2 = 100$  and  $\lambda = q_2/q_1 = 2$ . Then the probability that x persons out of 100 are colour blind is given by

$$\Pr[X = x] = e^{-2} \cdot \frac{2^x}{x!}$$

The probability that at most three persons out of 100 are colour blind is given by

$$\begin{aligned} \Pr[X \leq 3] &= \Pr[X = 3] + \Pr[X = 2] + \Pr[X = 1] + \Pr[X = 0] \\ &= e^{-2} \cdot \frac{2^3}{3!} + e^{-2} \cdot \frac{2^2}{2!} + e^{-2} \cdot \frac{2^1}{1!} + e^{-2} \cdot \frac{2^0}{0!} \\ &= e^{-2} \cdot \left(\frac{8}{6} + \frac{4}{2} + \frac{2}{1} + 1\right) \\ &= \frac{19}{3}e^{-2} \\ &\approx 0.857 \end{aligned}$$

b) Now we are interested in the sample size n such that at least one person is colour blind with probability 90%, i.e.  $q_2 = n$  and  $\lambda = q_1/q_2 = n/50$ . The probability that at least one

person is colour blind in a sample of size n is now given by

$$\Pr[X \ge 1] = 1 - \Pr[X = 0]$$
$$= 1 - e^{-\lambda} \cdot \frac{\lambda^0}{0!}$$
$$= 1 - e^{-n/50}$$

Setting  $\Pr[X \ge 1] \ge 90\%$  and solving this inequality for *n* yields  $n \ge 116$ . Hence, in a sample of 116 persons we have at least one colour blind person with probability 90%.

### 2 Gloriabar

- a) The situation can be modeled by a M/M/1 queue. We have an arrival rate of λ = 540/(90·60) = 1/10 (persons per second), and μ = 1/9 (persons per second). Thus ρ = λ/μ = 9/10. We can apply Little's Law (slides 76 ff.) and therefore, we can use the formulae for the response and waiting time from slide 79: The expected waiting time is W = ρ/(μ λ) = 81 seconds. The expected time until the student has paid for her menu is given by T = 1/(μ λ) = 90 seconds.
- b) We use the formula for the expected number of jobs in the queue from slide 79 and obtain queue length of  $N_Q = \rho^2/(1-\rho) = 8.1$ .
- c) We require that  $T = 1/(\mu 0.1) = 90/2$ . Thus,  $\mu = 11/90$ , i.e., instead of 9 secs, the service time should be  $90/11 \approx 8.2$  secs.

#### **3** Beachvolleyball

a) We know that the minimum of *i* independent and exponentially distributed (with parameter  $\lambda$ ) random variables is an exponentially distributed random variable with parameter  $i\lambda$ . Thus, we have the following birth-death-process:



b) Let  $\pi_i$  be the probability of state i in the equilibrium. From slide 87, we know that

$$\pi_i = \pi_0 \cdot \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}}$$

and thus

$$\pi_i = \pi_0 \cdot \frac{\lambda_0 \cdot \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \cdot \mu_2 \cdots \mu_i}.$$

Applying this formula to our process yields

$$\pi_i = \pi_0 \cdot \frac{n(n-1)\cdots(n-i+1)\cdot\lambda^i}{1\cdot 2\cdots i\cdot\mu^i} = \pi_0 \cdot \binom{n}{i} \cdot \rho^i \tag{1}$$

where  $\rho := \frac{\lambda}{\mu}$ . We know that the sum of all probabilities equals 1, so we have

$$\sum_{i=0}^{n} \pi_i = \pi_0 \sum_{i=0}^{n} \binom{n}{i} \rho^i = 1$$

Using the given formula for the binomial series

$$\sum_{i=0}^{n} \binom{n}{i} x^{i} = (1+x)^{n}$$

we obtain

$$\pi_0(1+\rho)^n = 1$$

Finally, we obtain

$$\pi_i = \frac{\binom{n}{i}\rho^i}{(1+\rho)^n} \ .$$

c) (i) It is  $\rho = 3/9 = 1/3$ . We calculate the probability that there are less than two fit players:

$$\pi_0 + \pi_1 = \frac{1}{(1+\rho)^n} \cdot \left(1 + \binom{n}{1} \cdot \rho^1\right)$$
$$= \left(\frac{3}{4}\right)^5 \cdot \left(1 + \frac{5}{3}\right)$$
$$= \frac{3^5}{2^{10}} \cdot \frac{8}{3}$$
$$= \frac{3^4}{2^7} \approx 0.63$$

Thus, the DISCO team cannot participate in the tournament with probability 0.63.

(ii) Now,  $\rho = 4/2 = 2$ . Again, we calculate  $\pi_0 + \pi_1$ :

$$\pi_0 + \pi_1 = \frac{1}{(1+\rho)^n} \cdot \left(1 + \binom{n}{1} \cdot \rho^1\right)$$
$$= \frac{1}{3^5} \cdot (1+2\cdot5)$$
$$= \frac{11}{3^5} \approx 0.045$$

Hence, the probability that the DISCO team cannot participate is only 0.045!

(iii) In general, if  $\rho \ge 1$ , an M/M/1 queue might grow infinitely and therefore doesn't have a stationary distribution. This cannot happen in this birth-and-death process, though, because there is only a bounded number of states. Hence, the process has a stationary distribution even for  $\rho \ge 1$ .

### 4 Theory of Ice Cream Vending

The situation can be described by a classic  ${\rm M}/{\rm M}/2$  system. According to slide 90, there is an equilibrium iff

$$\rho = \lambda/(2\mu) < 1$$
 .

For the stationary distribution, it holds that

$$\begin{aligned} \pi_0 &= \frac{1}{\left(\sum_{k=0}^{m-1} \frac{(\rho m)^k}{k!}\right) + \frac{(\rho m)^m}{m!(1-\rho)}} \\ &= \frac{1}{\frac{(2\rho)^0}{0!} + \frac{(2\rho)^1}{1!} + \frac{(2\rho)^2}{2!(1-\rho)}} \\ &= \frac{1}{1+2\rho + \frac{4\rho^2}{(2(1-\rho))}} \\ &= \frac{1}{1+2\rho + \frac{4\rho^2}{2(1-\rho)}} \\ &= \frac{1}{\frac{2(1-\rho)+4\rho(1-\rho)+4\rho^2}{2(1-\rho)}} \\ &= \frac{2(1-\rho)}{2-2\rho + 4\rho - 4\rho^2 + 4\rho^2} \\ &= \frac{2(1-\rho)}{2+2\rho} \\ &= \frac{1-\rho}{1+\rho} \ . \end{aligned}$$