

 $\mathrm{HS}\ 2010$

Dr. K. Lampka

Discrete Event Systems Solution to Exercise Sheet 14

1 Computation Tree Logic Model Checking

a) Ω_1 und Ω_6 are already in ENF. The remaining formulas are transformed as follows.

$$\begin{split} \Omega_2 &\equiv \neg \exists (\text{true} \bigcup \neg \text{yellow}) \\ \Omega_3 &\equiv \forall (\text{true} \bigcup \text{black}) \equiv \neg \exists (\neg \text{black} \bigcup \neg \text{true}) \land \neg \exists \Box \neg \text{black} \\ \Omega_4 &\equiv \neg \exists (\neg \text{black} \bigcup \neg \text{black}) \land \neg \exists \Box \neg \text{black} \\ \Omega_5 &\equiv \neg \exists \left(\neg (\exists \bigcirc \text{black}) \bigcup (\text{yellow} \land \neg (\exists \bigcirc \text{black})) \right) \land \neg \exists \Box \neg (\exists \bigcirc \text{black}) \end{split}$$

- b) We first give the annotated syntax trees for the syntactically correct formulas. The calculation of the satisfiability sets is explained examplarily in \mathbf{f}) for Ω_5 . For the remaining formulas, the calculation works analogously.
 - $\Omega_1 = \exists \Box \text{green}$:

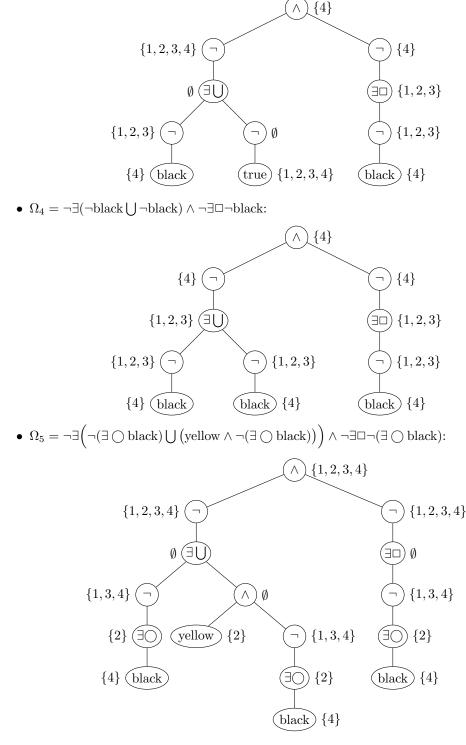
• $\Omega_2 = \neg \exists (true \bigcup \neg yellow):$

$$\{1, 2, 3, 4\} \text{ true } \neg \{1, 3, 4\}$$

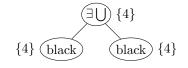
$$(1, 2, 3, 4) \text{ true } \gamma \{1, 3, 4\}$$

$$(1, 2, 3, 4) \text{ true } \{1, 3, 4\}$$

• $\Omega_3 = \neg \exists (\neg \text{black} \bigcup \neg \text{true}) \land \neg \exists \Box \neg \text{black}:$



• $\Omega_6 = \exists (black \bigcup black):$



• We explain the calculation of the satisfiability sets $\text{Satisfy}(\phi)$ exemplarily for Ω_5 . The $\text{Satisfy}(\phi)$ -sets are first determined for the leaves of the syntax tree and then the nodes of the tree are labelled in a bottom-up fashion.

- $\text{ Satisfy(black)} = \{ \vec{s} \in \{1, 2, 3, 4\} \mid L(\vec{s}) = \text{black} \} = \{4\}$
- $\text{ Satisfy(yellow)} = \{ \vec{s} \in \{1, 2, 3, 4\} \mid L(\vec{s}) = \text{yellow} \} = \{2\}$
- Satisfy(∃ black) = { $\vec{s} \in \{1, 2, 3, 4\}$ | Post(\vec{s}) ∩ Satisfy(black) ≠ ∅} = {2}
- $\operatorname{Satisfy}(\neg \exists \bigcirc \operatorname{black}) = \mathbb{S} \setminus \operatorname{Satisfy}(\exists \bigcirc \operatorname{black}) = \{1, 3, 4\}$
- $\text{Satisfy}(\text{yellow} \land \neg \exists \bigcirc \text{black}) = \text{Satisfy}(\text{yellow}) \cap \text{Satisfy}(\neg \exists \bigcirc \text{black}) = \emptyset$
- Satisfy($\exists \Box (\neg \exists \bigcirc black)$) =: Satisfy(ϕ):

Here we have to do a fixed point calculation. We calculate the sets $\text{Satisfy}_i(\phi)$ until we reach a fixed point where we have $\text{Satisfy}_j(\phi) = \text{Satisfy}_i(\phi)$ for all j > i.

- * $\operatorname{Satisfy}_0(\phi) = \operatorname{Satisfy}(\neg \exists \bigcirc \operatorname{black}) = \{1, 3, 4\}$
- * Satisfy₁(ϕ) = { $\vec{s} \in \{1, 3, 4\}$ | Post(\vec{s}) $\cap \{1, 3, 4\} \neq \emptyset$ } = {1}
- * Satisfy₂(ϕ) = { $\vec{s} \in \{1\}$ | Post(\vec{s}) $\cap \{1\} \neq \emptyset$ } = \emptyset

Clearly, we have arrived at a fixed point since the set $\operatorname{Satisfy}_3(\phi)$ (as well as all other sets $\operatorname{Satisfy}_i(\phi)$ for i > 3) cannot hold more elements than $\operatorname{Satisfy}_2(\phi)$. Hence, we have $\operatorname{Satisfy}(\exists \Box(\neg \exists \bigcirc \operatorname{black})) = \emptyset$.

- Satisfy(∃(¬∃ black) U(yellow ∧ ¬∃ black)) =: Satisfy(ϕ): Again, we have to do a fixed point calculation.
 - * Satisfy₀(ϕ) = Satisfy(yellow $\land \neg \exists \bigcirc$ black) = \emptyset
 - * Satisfy₁(ϕ) = $\emptyset \cup \{\vec{s} \in \{1, 3, 4\} \mid \mathcal{P}ost(\vec{s}) \cap \emptyset \neq \emptyset\} = \emptyset$

We have arrived at a fixed point because all subsequent sets $\operatorname{Satisfy}_i(\phi)$ evaluate to the empty set. Hence we have $\operatorname{Satisfy}(\exists(\neg \exists \bigcirc \operatorname{black}) \bigcup(\operatorname{yellow} \land \neg \exists \bigcirc \operatorname{black})) = \emptyset$.

- $\operatorname{Satisfy}(\neg \exists (\neg \exists \bigcirc \operatorname{black}) \bigcup (\operatorname{yellow} \land \neg \exists \bigcirc \operatorname{black})) = \mathbb{S} \setminus \emptyset = \{1, 2, 3, 4\}$
- $\operatorname{Satisfy}(\neg \exists \Box (\neg \exists \bigcirc \operatorname{black})) = \mathbb{S} \setminus \emptyset = \{1, 2, 3, 4\}$
- $\operatorname{Satisfy}(\neg \exists (\neg \exists \bigcirc \operatorname{black}) \bigcup (\operatorname{yellow} \land \neg \exists \bigcirc \operatorname{black}) \land \neg \exists \Box (\neg \exists \bigcirc \operatorname{black})) = \{1, 2, 3, 4\} \cap \{1, 2, 3, 4\} = \{1, 2, 3, 4\}.$
- c) A formula Ω is satisfied by \mathcal{K} if the intersection of \mathbb{S}_0 and $\operatorname{Satisfy}(\mathcal{K})$ at the root of the syntax tree is not empty. This is only the case for Ω_5 . All other formulas are not satisfiable in \mathcal{K} .
- d) We shall have a look at the computation tree.

A path Π_1 starting in state 1 falsifies Ω_2 and Ω_4 because already in state 1 we have \neg yellow as well as \neg black. The path $\Pi_2 = (1, 3, 2, 1, 3, 2, ...)$ falsifies Ω_3 because this path never reaches state 4 and hence never fulfils black.

2 Timed Automata

Solutions can be found in the reference material for this exercise as given on the course website or at http://disco.ethz.ch/lectures/hs10/des/exercises/UppaalSolutions.zip.