Discrete Event Systems

Solution to Exercise Sheet 14

1 Computation Tree Logic Model Checking

a) Ω_{1} und Ω_{6} are already in ENF. The remaining formulas are transformed as follows.

$$
\begin{aligned}
& \Omega_{2} \equiv \neg \exists(\text { true } \bigcup \neg \text { yellow }) \\
& \Omega_{3} \equiv \forall(\text { true } \bigcup \text { black }) \equiv \neg \exists(\neg \text { black } \bigcup \neg \text { true }) \wedge \neg \exists \square \neg \text { black } \\
& \Omega_{4} \equiv \neg \exists(\neg \text { black } \bigcup \neg \text { black }) \wedge \neg \exists \square \neg \text { black } \\
& \Omega_{5} \equiv \neg \exists(\neg(\exists \bigcirc \text { black }) \bigcup(\text { yellow } \wedge \neg(\exists \bigcirc \text { black }))) \wedge \neg \exists \square \neg(\exists \bigcirc \text { black })
\end{aligned}
$$

b) We first give the annotated syntax trees for the syntactically correct formulas. The calculation of the satisfiability sets is explained examplarily in \mathbf{f}) for Ω_{5}. For the remaining formulas, the calculation works analogously.

- $\Omega_{1}=\exists \square$ green:

- $\Omega_{2}=\neg \exists$ (true $\bigcup \neg$ yellow):

- $\Omega_{3}=\neg \exists(\neg$ black $\bigcup \neg$ true $) \wedge \neg \exists \square \neg$ black:

- $\Omega_{4}=\neg \exists(\neg$ black $\bigcup \neg$ black $) \wedge \neg \exists \square \neg$ black:

- $\Omega_{5}=\neg \exists(\neg(\exists \bigcirc$ black $) \bigcup($ yellow $\wedge \neg(\exists \bigcirc$ black $))) \wedge \neg \exists \square \neg(\exists \bigcirc$ black $):$

- $\Omega_{6}=\exists$ (black \bigcup black):
\{4\}

$\{4\}$
- We explain the calculation of the satisfiability sets $\operatorname{Satisfy}(\phi)$ exemplarily for Ω_{5}. The Satisfy (ϕ)-sets are first determined for the leaves of the syntax tree and then the nodes of the tree are labelled in a bottom-up fashion.
- Satisfy (black) $=\{\vec{s} \in\{1,2,3,4\} \mid L(\vec{s})=$ black $\}=\{4\}$
- Satisfy(yellow) $=\{\vec{s} \in\{1,2,3,4\} \mid L(\vec{s})=$ yellow $\}=\{2\}$
- Satisfy $(\exists \bigcirc$ black $)=\{\vec{s} \in\{1,2,3,4\} \mid \operatorname{Post}(\vec{s}) \cap \operatorname{Satisfy}($ black $) \neq \emptyset\}=\{2\}$
- Satisfy $(\neg \exists \bigcirc$ black $)=\mathbb{S} \backslash \operatorname{Satisfy}(\exists \bigcirc$ black $)=\{1,3,4\}$
$-\operatorname{Satisfy}($ yellow $\wedge \neg \exists \bigcirc$ black $)=\operatorname{Satisfy}($ yellow $) \cap \operatorname{Satisfy}(\neg \exists \bigcirc$ black $)=\emptyset$
$-\operatorname{Satisfy}(\exists \square(\neg \exists \bigcirc$ black $))=: \operatorname{Satisfy}(\phi)$:
Here we have to do a fixed point calculation. We calculate the sets $\operatorname{Satisfy}_{i}(\phi)$ until we reach a fixed point where we have $\operatorname{Satisfy}_{j}(\phi)=\operatorname{Satisfy}_{i}(\phi)$ for all $j>i$.
* Satisfy $_{0}(\phi)=\operatorname{Satisfy}(\neg \exists \bigcirc$ black $)=\{1,3,4\}$
* $\operatorname{Satisfy}_{1}(\phi)=\{\vec{s} \in\{1,3,4\} \mid \operatorname{Post}(\vec{s}) \cap\{1,3,4\} \neq \emptyset\}=\{1\}$
* $\operatorname{Satisfy}_{2}(\phi)=\{\vec{s} \in\{1\} \mid \operatorname{Post}(\vec{s}) \cap\{1\} \neq \emptyset\}=\emptyset$

Clearly, we have arrived at a fixed point since the set $\operatorname{Satisfy}_{3}(\phi)$ (as well as all other sets $\operatorname{Satisfy}_{i}(\phi)$ for $\left.i>3\right)$ cannot hold more elements than $\operatorname{Satisfy}_{2}(\phi)$. Hence, we have Satisfy $(\exists \square(\neg \exists \bigcirc$ black $))=\emptyset$.
$-\operatorname{Satisfy}(\exists(\neg \exists \bigcirc$ black $) \bigcup($ yellow $\wedge \neg \exists \bigcirc$ black $))=: \operatorname{Satisfy}(\phi)$: Again, we have to do a fixed point calculation.
$* \operatorname{Satisfy}_{0}(\phi)=\operatorname{Satisfy}($ yellow $\wedge \neg \exists \bigcirc$ black $)=\emptyset$

* $\operatorname{Satisfy}_{1}(\phi)=\emptyset \cup\{\vec{s} \in\{1,3,4\} \mid \operatorname{Post}(\vec{s}) \cap \emptyset \neq \emptyset\}=\emptyset$

We have arrived at a fixed point because all subsequent sets $\operatorname{Satisfy}_{i}(\phi)$ evaluate to the empty set. Hence we have $\operatorname{Satisfy}(\exists(\neg \exists \bigcirc$ black $) \bigcup($ yellow $\wedge \neg \exists \bigcirc$ black $))=\emptyset$.

- Satisfy $(\neg \exists(\neg \exists \bigcirc$ black $) \bigcup($ yellow $\wedge \neg \exists \bigcirc$ black $))=\mathbb{S} \backslash \emptyset=\{1,2,3,4\}$
- Satisfy $(\neg \exists \square(\neg \exists \bigcirc$ black $))=\mathbb{S} \backslash \emptyset=\{1,2,3,4\}$
$-\operatorname{Satisfy}(\neg \exists(\neg \exists \bigcirc$ black $) \bigcup($ yellow $\wedge \neg \exists \bigcirc$ black $) \wedge \neg \exists \square(\neg \exists \bigcirc$ black $))=\{1,2,3,4\} \cap$ $\{1,2,3,4\}=\{1,2,3,4\}$.
c) A formula Ω is satisfied by \mathcal{K} if the intersection of \mathbb{S}_{0} and $\operatorname{Satisfy}(\mathcal{K})$ at the root of the syntax tree is not empty. This is only the case for Ω_{5}. All other formulas are not satisfiable in \mathcal{K}.
d) We shall have a look at the computation tree.

A path Π_{1} starting in state 1 falsifies Ω_{2} and Ω_{4} because already in state 1 we have \neg yellow as well as \neg black. The path $\Pi_{2}=(1,3,2,1,3,2, \ldots)$ falsifies Ω_{3} because this path never reaches state 4 and hence never fulfils black.

2 Timed Automata

Solutions can be found in the reference material for this exercise as given on the course website or at http://disco.ethz.ch/lectures/hs10/des/exercises/UppaalSolutions.zip.

