

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

HS 2010

Dr. K. Lampka / J. Smula, T. Langner

Discrete Event Systems

Solution to Exercise Sheet 12

1 Labelled Graphs

a) We give two algorithms, an iterative and a recursive one, that calculate whether the given LTS \mathcal{L} accepts the word $\omega = w_1 \dots w_n$.

```
Algorithm 1 ACCEPTITERATIVE(\mathcal{L}, \omega)
```

```
Input: LTS \mathcal{L} = (\mathbb{S}, \mathbb{S}_0, Act, \mathbb{E}), \ \omega = w_1 w_2 \dots w_n
states \leftarrow \mathbb{S}_0
                                                                   \triangleright contains the states reachable by w_1 \dots w_{i-1}
for i \leftarrow 1 to n do
    newStates \leftarrow \emptyset
                                                               \triangleright contains the new states reachable by w_1 \dots w_i
    for all v \in \text{states do}
                                                                                              ⊳ For all current states...
         for all c \in \text{PostSetNodes}(v) do
                                                                                            ⊳ For all reachable states...
              if Act((v,c)) = w_i then
                                                                                                \triangleright If the label matches...
                   newStates \leftarrow newStates \cup \{e.target()\}
                                                                                                 ▷ ...remember the state
    if newStates = \emptyset then
                                                                                 \triangleright If no edge with label w_i exists...
         return false
    states \leftarrow newStates
return true
```

Algorithm 2 ACCEPTRECURSIVE(\mathcal{L} , states, ω)

```
Input: LTS \mathcal{L} = (\mathbb{S}, \mathbb{S}_0, Act, \mathbb{E}), states: set of states, \omega = w_1 w_2 \dots w_n
newStates \leftarrow \emptyset
if \omega = \emptyset then
                                                 ▷ Every letter of the word has been matched to a path.
    return true
else if states = \emptyset then
                                                                 ▷ No state was reachable by the last letter.
    return false
                                                                                        \triangleright For all current states...
for all v \in \text{states do}
    for all c \in \text{PostSetNodes}(v) do
                                                                                     ⊳ For all reachable states...
         if Act((v,c)) = w_1 then
                                                                                         ▶ If the label matches...
             newStates \leftarrow newStates \cup \{c\}
                                                                                          ▷ ...remember the state
                                                                                        \triangleright Remove first letter of \omega
\omega \leftarrow w_2, \ldots, w_n
return AcceptRecursive(\mathcal{L}, newStates, \omega)
                                                                      ▷ Recursive call for the remaining word
```

The initial call is ACCEPTRECURSIVE($\mathcal{L}, \mathbb{S}_0, \omega$).

2 Structural Properties of Petri Nets and Token Game

- a) The pre and post sets of a transition are defined as follows:
 - pre set: • $t := \{ p \mid (p, t) \in C \}$ • post set: $t = \{ p \mid (t, p) \in C \},$

the pre and post sets of a place are defined analogously.

For the petri net N_1 we obtain the following sets:

- b) A transition is enabled if all places in its pre set contain enough tokens. In the case of N_1 , which has only unweighted edges, one token per place suffices. When t_2 fires, it consumes one token out of each place in the pre set of t_2 and produces one token on each place in the post set of t_2 . Hence, the firing of t_2 produces one token on place p_3 and p_9 each, the one on p_2 is consumed. After this, t_5 is enabled because both p_9 and p_5 hold one token. However, t_3 is not enabled because p_3 contains a token but p_{10} does not.
- c) Before t_2 fires there are two tokens in N_1 , one on p_2 and p_5 each. Directly afterwards, there are tokens on places p_3 , p_9 und p_5 .
- d) A token traverses the upper cycle until t_2 fires. Then one token remains on p_3 and waits, and another one is produced in p_9 , which enables transition t_5 . When t_5 consumes the tokens on p_9 and p_5 and produces a token on p_6 , this one can traverse the lower cycle until t_8 is enabled. One token now remains on p_5 and waits, another one enables t_3 , because there is still one token on p_3 . Now one token traverses the upper cycle again until t_2 is enabled, and so on.

Hence, this petri net models two processes which always appear alternately.

The reachability graph $RG(P, \vec{s}_0)$ of a petri net P is a quadruple $(\mathbb{S}, \mathbb{S}_0, Act, \mathbb{E})$ such that

- S is the set of reachable states of P starting from \vec{s}_0
- $\mathbb{S}_0 := \{\vec{s}_0\}$ is the start state of P
- Act is the set of transition labels
- $\mathbb{E} \subseteq \mathbb{S} \times Act \times \mathbb{S}$ is the set of edges such that $\mathbb{E} = \{ (\vec{s}, t, \delta(\vec{s}, t)) \mid \vec{s} \in \mathbb{S} \land t \in T \land \vec{s} \triangleright t \}$

Usually the states of the petri net are denoted by vectors such that the *i*-th position in the vector indicates the number of tokens on place p_i of the petri net. So, for example, the starting state $\vec{s_0}$ of N_1 , in which the places p_1 and p_5 hold one token each, is denoted by

 $\vec{s}_0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0)$. Hence, the reachability graph looks as follows:

```
\begin{split} \mathbb{S} &= \{ & & (1,0,0,0,1,0,0,0,0,0), (0,1,0,0,1,0,0,0,0), (0,0,1,0,1,0,0,0,1,0), \\ & & (0,0,1,0,0,1,0,0,0), (0,0,1,0,0,0,1,0,0,0), (0,0,1,0,0,0,0,1,0,0), \\ & & (0,0,1,0,1,0,0,0,0,1), (0,0,0,1,1,0,0,0,0,0) \\ & \}, \\ \mathbb{S}_0 &= \{ & & (1,0,0,0,1,0,0,0,0,0) \\ & \}, \\ \mathcal{A}ct &= \{ & & t_1,t_2,t_3,t_4,t_5,t_6,t_7,t_8,t_9,t_{10} \\ & \}, \\ \mathbb{E} &= \{ & & ((1,0,0,0,1,0,0,0,0,0),t_1,(0,1,0,0,1,0,0,0,0,0)), \\ & & ((0,1,0,0,1,0,0,0,0,0),t_2,(0,0,1,0,1,0,0,0,0,0)), \\ & & ((0,0,1,0,1,0,0,0,1,0),t_5,(0,0,1,0,0,1,0,0,0,0,0)), \\ & & ((0,0,1,0,0,1,0,0,0),t_6,(0,0,1,0,0,0,1,0,0,0)), \\ & & ((0,0,1,0,0,0,1,0,0,0),t_7,(0,0,1,0,0,0,0,1,0,0)), \\ & & ((0,0,1,0,0,0,0,1,0,0),t_8,(0,0,1,0,1,0,0,0,0,0,1)), \\ & & ((0,0,1,0,1,0,0,0,0,1),t_3,(0,0,0,1,1,0,0,0,0,0,0)), \\ & & ((0,0,0,1,1,0,0,0,0,0),t_4,(1,0,0,0,1,0,0,0,0,0)), \\ & & ((0,0,0,1,1,0,0,0,0,0),t_4,(1,0,0,0,1,0,0,0,0,0)), \\ \end{pmatrix} \end{split}
```

For better legibility we denote the states in such a way that the index contains the places that hold a token in this state, for example $\vec{s}_0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) = s_{1,5}$.

Then the reachability graph can also be specified as follows:

3 Basic Properties of Petri Nets

See exercise sheet 13.

4 Reachability Analysis for Petri Nets

See exercise sheet 13.

5 Mutual Exclusion

For each process we introduce two places $(p_1, p_2, p_3 \text{ und } p_4)$ representing the process within the normal program execution (p_1, p_2) as well as in the critical section (p_3, p_4) . For each process, we have a token indicating which section of the program currently is executed. Additionally, we introduce a place p_0 representing the mutex variable. If the mutex variable is 0, then we have a token at p_0 . We have to make sure that a process can only enter its critical section if there is a token at the mutex place. The resulting petri net looks as follows.

Assume that initially, both processes are in an uncritical section. A process can only enter its critical section if there is a token at p_0 . In thise case, the token is consumed when entering the critical section. A new mutex token at p_0 is not created until the process leaves its critical section. Hence, both processes exclude each other mutually from the concurrent access to the critical section.