Discrete Event Systems

Solution to Exercise Sheet 12

1 Labelled Graphs

a) We give two algorithms, an iterative and a recursive one, that calculate whether the given LTS \mathcal{L} accepts the word $\omega=w_{1} \ldots w_{n}$.

```
Algorithm 1 AcCeptIterative \((\mathcal{L}, \omega)\)
    Input: \(\operatorname{LTS} \mathcal{L}=\left(\mathbb{S}, \mathbb{S}_{0}, A c t, \mathbb{E}\right), \omega=w_{1} w_{2} \ldots w_{n}\)
    states \(\leftarrow \mathbb{S}_{0} \quad \triangleright\) contains the states reachable by \(w_{1} \ldots w_{i-1}\)
    for \(i \leftarrow 1\) to \(n\) do
        newStates \(\leftarrow \emptyset \quad \triangleright\) contains the new states reachable by \(w_{1} \ldots w_{i}\)
        for all \(v \in\) states do \(\quad \triangleright\) For all current states. . .
            for all \(c \in \operatorname{PostSetNodes}(v)\) do \(\quad \triangleright\) For all reachable states...
                if \(\operatorname{Act}((v, c))=w_{i}\) then
                    newStates \(\leftarrow\) newStates \(\cup\{e\).target ()\(\} \quad \triangleright \ldots\) remember the state
        if newStates \(=\emptyset\) then \(\quad \triangleright\) If no edge with label \(w_{i}\) exists..
            return false
        states \(\leftarrow\) newStates
    return true
```

```
Algorithm 2 AcceptRecursive \((\mathcal{L}\), states, \(\omega\) )
    Input: \(\operatorname{LTS} \mathcal{L}=\left(\mathbb{S}, \mathbb{S}_{0}, A c t, \mathbb{E}\right)\), states: set of states, \(\omega=w_{1} w_{2} \ldots w_{n}\)
    newStates \(\leftarrow \emptyset\)
    if \(\omega=\emptyset\) then \(\quad\) Every letter of the word has been matched to a path.
        return true
    else if states \(=\emptyset\) then \(\quad \triangleright\) No state was reachable by the last letter.
        return false
    for all \(v \in\) states do \(\quad \triangleright\) For all current states. . .
        for all \(c \in \operatorname{PostSetNodes}(v)\) do \(\quad \triangleright\) For all reachable states. . .
            if \(\operatorname{Act}((v, c))=w_{1}\) then \(\quad \triangleright\) If the label matches...
                newStates \(\leftarrow\) newStates \(\cup\{c\} \quad \triangleright \ldots\) remember the state
    \(\omega \leftarrow w_{2}, \ldots, w_{n} \quad \triangleright\) Remove first letter of \(\omega\)
    return AcceptRecursive \((\mathcal{L}\), newStates, \(\omega) \quad \triangleright\) Recursive call for the remaining word
```

The initial call is AcceptRecursive $\left(\mathcal{L}, \mathbb{S}_{0}, \omega\right)$.

2 Structural Properties of Petri Nets and Token Game

a) The pre and post sets of a transition are defined as follows:

- pre set: $\bullet t:=\{p \mid(p, t) \in C\}$
- post set: $t \bullet:=\{p \mid(t, p) \in C\}$,
the pre and post sets of a place are defined analogously.
For the petri net N_{1} we obtain the following sets:

$$
\begin{aligned}
\bullet t_{5} & =\left\{p_{5}, p_{9}\right\}, & & t_{5} \bullet
\end{aligned}
$$

b) A transition is enabled if all places in its pre set contain enough tokens. In the case of N_{1}, which has only unweighted edges, one token per place suffices. When t_{2} fires, it consumes one token out of each place in the pre set of t_{2} and produces one token on each place in the post set of t_{2}. Hence, the firing of t_{2} produces one token on place p_{3} and p_{9} each, the one on p_{2} is consumed. After this, t_{5} is enabled because both p_{9} and p_{5} hold one token. However, t_{3} is not enabled because p_{3} contains a token but p_{10} does not.
c) Before t_{2} fires there are two tokens in N_{1}, one on p_{2} and p_{5} each. Directly afterwards, there are tokens on places p_{3}, p_{9} und p_{5}.
d) A token traverses the upper cycle until t_{2} fires. Then one token remains on p_{3} and waits, and another one is produced in p_{9}, which enables transition t_{5}. When t_{5} consumes the tokens on p_{9} and p_{5} and produces a token on p_{6}, this one can traverse the lower cycle until t_{8} is enabled. One token now remains on p_{5} and waits, another one enables t_{3}, because there is still one token on p_{3}. Now one token traverses the upper cycle again until t_{2} is enabled, and so on.

Hence, this petri net models two processes which always appear alternately.
The reachability graph $R G\left(P, \vec{s}_{0}\right)$ of a petri net P is a quadruple $\left(\mathbb{S}, \mathbb{S}_{0}, A c t, \mathbb{E}\right)$ such that

- \mathbb{S} is the set of reachable states of P starting from \vec{s}_{0}
- $\mathbb{S}_{0}:=\left\{\vec{s}_{0}\right\}$ is the start state of P
- Act is the set of transition labels
- $\mathbb{E} \subseteq \mathbb{S} \times A c t \times \mathbb{S}$ is the set of edges such that $\mathbb{E}=\{(\vec{s}, t, \delta(\vec{s}, t)) \mid \vec{s} \in \mathbb{S} \wedge t \in T \wedge \vec{s} \triangleright t\}$

Usually the states of the petri net are denoted by vectors such that the i-th position in the vector indicates the number of tokens on place p_{i} of the petri net. So, for example, the starting state \vec{s}_{0} of N_{1}, in which the places p_{1} and p_{5} hold one token each, is denoted by
$\vec{s}_{0}=(1,0,0,0,1,0,0,0,0,0)$. Hence, the reachability graph looks as follows:

$$
\begin{aligned}
& \mathbb{S}=\{\quad(1,0,0,0,1,0,0,0,0,0),(0,1,0,0,1,0,0,0,0,0),(0,0,1,0,1,0,0,0,1,0), \\
& (0,0,1,0,0,1,0,0,0,0),(0,0,1,0,0,0,1,0,0,0),(0,0,1,0,0,0,0,1,0,0) \text {, } \\
& (0,0,1,0,1,0,0,0,0,1),(0,0,0,1,1,0,0,0,0,0) \quad\}, \\
& \mathbb{S}_{0}=\{\quad(1,0,0,0,1,0,0,0,0,0) \quad\}, \\
& A c t=\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}, t_{9}, t_{10} \quad\right\}, \\
& \mathbb{E}=\left\{\quad\left((1,0,0,0,1,0,0,0,0,0), t_{1},(0,1,0,0,1,0,0,0,0,0)\right),\right. \\
& \left((0,1,0,0,1,0,0,0,0,0), t_{2},(0,0,1,0,1,0,0,0,1,0)\right) \text {, } \\
& \left((0,0,1,0,1,0,0,0,1,0), t_{5},(0,0,1,0,0,1,0,0,0,0)\right) \text {, } \\
& \left((0,0,1,0,0,1,0,0,0,0), t_{6},(0,0,1,0,0,0,1,0,0,0)\right) \text {, } \\
& \left((0,0,1,0,0,0,1,0,0,0), t_{7},(0,0,1,0,0,0,0,1,0,0)\right) \text {, } \\
& \left((0,0,1,0,0,0,0,1,0,0), t_{8},(0,0,1,0,1,0,0,0,0,1)\right) \text {, } \\
& \left((0,0,1,0,1,0,0,0,0,1), t_{3},(0,0,0,1,1,0,0,0,0,0)\right) \text {, } \\
& \left.\left((0,0,0,1,1,0,0,0,0,0), t_{4},(1,0,0,0,1,0,0,0,0,0)\right) \quad\right\} .
\end{aligned}
$$

For better legibility we denote the states in such a way that the index contains the places that hold a token in this state, for example $\vec{s}_{0}=(1,0,0,0,1,0,0,0,0,0)=s_{1,5}$.
Then the reachability graph can also be specified as follows:

3 Basic Properties of Petri Nets

See exercise sheet 13 .

4 Reachability Analysis for Petri Nets

See exercise sheet 13 .

5 Mutual Exclusion

For each process we introduce two places $\left(p_{1}, p_{2}, p_{3}\right.$ und $\left.p_{4}\right)$ representing the process within the normal program execution $\left(p_{1}, p_{2}\right)$ as well as in the critical section $\left(p_{3}, p_{4}\right)$. For each process, we have a token indicating which section of the program currently is executed. Additionally, we introduce a place p_{0} representing the mutex variable. If the mutex variable is 0 , then we have a token at p_{0}. We have to make sure that a process can only enter its critical section if there is a token at the mutex place. The resulting petri net looks as follows.

Assume that initially, both processes are in an uncritical section. A process can only enter its critical section if there is a token at p_{0}. In thise case, the token is consumed when entering the critical section. A new mutex token at p_{0} is not created until the process leaves its critical section. Hence, both processes exclude each other mutually from the concurrent access to the critical section.

