Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
HS 2010

Discrete Event Systems

Solution to Exercise Sheet 11

1 Competitive Christmas

a) If our algorithm tells Roger to buy a tree of size c, then it is followed in the worst-case by a tree of size b which yields a competitive ratio of $\rho_{A}=b / c$. To make ρ_{A} as small as possible, Roger should only buy a tree if its size c is as large as possible. If he ignores a tree of size $c-\varepsilon$ in the hope that he finds a larger tree, he might in the worst-case only encounter trees of size a yielding a competitive ratio of $\rho_{B}=(c-\varepsilon) / a$. In these two cases ρ should be as small as possible such that Roger gets a tree that is as large as possible. Hence, we have to set the value c above which Roger buys a tree such that ρ_{A} and ρ_{B} are minimised. This is the case for $\rho_{A}=\rho_{B}$ which yields $c=\sqrt{a b}$. The corresponding competitive ratio is $\sqrt{b / a}$.
b) Discussed in a).

2 The Best Secretary

a) To avoid a potentially bad ordering of the candidates, Roger invites them into his room in a random order. Within the first half ($n / 2$ candidates), Roger only rates the applicants and memorises the best quality G. In the second half, Roger accepts a candidate if its quality exceeds G.
The probability that the second-best candidate is in the first half is $1 / 2$. The probability that the best candidate is in the second half is also $1 / 2$. If both these events happen, Roger actually hires the best candidate. This case occurs with probability $1 / 2 \cdot 1 / 2=1 / 4$.
b) The analysis for the above algorithm clearly is only a rough estimate. We only considered the special case where the second-best secretary is in the first half and the best one in the second half. Roger also would have chosen the best one if the third-best is in the first half and the best and the second-best candidate in the second half but in this order. Furthermore, we assumed without justification that the algorithm rates the first half of the candidates and then selects one from the second half.
For an exact analysis, assume that Roger first rates $x \cdot n$ candidates (for $x \in[0,1]$) and then chooses the candidate that is better than the best one from these $x \cdot n$ applicants. Let $\mathbf{1}$ and $\mathbf{2}$ denote the set of the candidates in the first and second part, respectively.

We denote by C_{i} the i-th best candidate and define the probability p_{i} for the event that $C_{i} \in \mathbf{1}$ and all better ones are in $\mathbf{2}$ with the best candidate first. The case (special case from above) that the $C_{2} \in \mathbf{1}$ and $C_{1} \in \mathbf{2}$ occurs with probability

$$
\begin{aligned}
p_{2} & =\operatorname{Pr}\left[C_{2} \in \mathbf{1}\right] \cdot \operatorname{Pr}\left[C_{1} \in \mathbf{2} \mid C_{2} \in \mathbf{1}\right] \\
& =x \cdot \frac{(1-x) \cdot n}{n-1}
\end{aligned}
$$

Note that the conditional probability for C_{1} being in 2 given that C_{2} is in $\mathbf{1}$ is bigger than $(1-x)$ since one "slot" in $\mathbf{1}$ is already taken by C_{2}.
Similiarly, we can calculate the probability p_{3} but we now also have to consider the probability that C_{1} appears before C_{2} in $\mathbf{2}$.

$$
\begin{aligned}
p_{3} & =\operatorname{Pr}\left[C_{3} \in \mathbf{1}\right] \cdot \operatorname{Pr}\left[C_{2} \in \mathbf{2} \mid C_{3} \in \mathbf{1}\right] \cdot \operatorname{Pr}\left[C_{1} \in \mathbf{2} \mid C_{3} \in \mathbf{1} \text { and } C_{2} \in \mathbf{2}\right] \cdot \operatorname{Pr}\left[C_{1} \text { before } C_{2}\right] \\
& =x \cdot \frac{(1-x) \cdot n}{n-1} \cdot \frac{(1-x) \cdot n-1}{n-2} \cdot \frac{1}{2}
\end{aligned}
$$

Note again that we have to use conditional probabilities here.
Analogous to p_{3}, we can derive a formula for p_{i}.

$$
\begin{aligned}
p_{i} & =x \cdot\left(\prod_{j=0}^{i-2} \frac{(1-x) \cdot n-j}{n-j-1}\right) \cdot \frac{1}{i-1} \\
& =x \cdot\left(\prod_{j=0}^{i-2}(1-x) \cdot\left(1+\frac{1}{n-j-1}\right)\right) \cdot \frac{1}{i-1}
\end{aligned}
$$

Since we are interested in the probabilities for large n, we can consider the limit instead.

$$
\begin{aligned}
p_{i}^{\prime}=\lim _{n \rightarrow 0} p_{i} & =\lim _{n \rightarrow 0} x \cdot\left(\prod_{j=0}^{i-2}(1-x) \cdot\left(1+\frac{1}{n-j-1}\right)\right) \cdot \frac{1}{i-1} \\
& =x \cdot\left(\prod_{j=0}^{i-2}(1-x)\right) \cdot \frac{1}{i-1} \\
& =x \cdot(1-x)^{i-1} \cdot \frac{1}{i-1}
\end{aligned}
$$

Note that this result corresponds to ignoring the dependence between the candidates in both parts by calculating without conditional probabilities.
Now we can calculate the success probability $p_{\text {succ }}$ for hiring the best candidate.

$$
\begin{aligned}
p_{\text {succ }}(x) & =\sum_{i=2}^{\infty} p_{i}^{\prime} \\
& =\sum_{i=1}^{\infty} \frac{x}{i} \cdot(1-x)^{i} \\
& =x \cdot \sum_{i=1}^{\infty} \frac{(1-x)^{i}}{i} \\
& =-x \ln (x)
\end{aligned}
$$

Differentiating yields that $p_{\text {succ }}(x)$ attains its maximum for $x=1 / e$ and we have further $p_{\text {succ }}(1 / e)=1 / e$. Hence, Roger should only rate a fraction of $1 / e \approx 37 \%$ of the candidates and then start with the selection as described above. Then, the probability to get the best secretary is $1 / e$.

