
Distributed
 Computing

HS 2010 Prof. R. Wattenhofer / J. Smula, T. Langner

Discrete Event Systems
Solution to Exercise Sheet 10

1 Competitive Analysis

Competitiveness

In the script there is a definition for the competitiveness of an algorithm. However, this
definition only holds if we want to evaluate an algorithm by means of its costs. Sometimes,
we want to compare algorithms regarding their benefit rather than their costs. In this case,
we have to be a bit careful with the definition of a c-competitive algorithm. We say that
an algorithm Alg is c-competitive, if for all finite input sequences the solution of algorithm
Alg is at most a factor c worse than the optimal algorithm, regardless of the algorithms
being compared concerning costs or benefit.
According to whether we evaluate an algorithm based on costs or benefit, an algorithm Alg
is c-competitive if for all finite input sequences I

costAlg(I) ≤ c · costOpt(I) + k or

benefitAlg(I) ≥ 1

c
· benefitOpt(I)− k respectively.

Competitive Analysis

The competitive analysis of an algorithm Alg consists of two separate steps. First, we show
that for an arbitrary problem instance, the result of Alg is asymptotically at most a factor
c worse than the the optimal offline result. This yields an upper bound on Alg’s result,
that is costAlg ≤ c · costOpt + k. If the task is to show that Alg is c-competitive for a
constant c, then we are done. If we are interested in a tight analysis, we have to show that
there is a problem instance where the result of Alg is a factor c worse than the optimal
offline result. This gives a matching lower bound on the objective value of the algorithm,
costAlg ≥ c · costOpt.

Naturally, the second step is easier than the first one because we just have to find a “bad
instance”. The first step is often much more involved. A pattern that works quite often is
the following.

1. Consider an arbitrary input sequence for Alg.

2. Partition the input sequence into suitable parts.

3. Show that cAlg ≤ c · cOpt for each part.

The tricky part here is to find a suitable partition in step 2.

a) Recall that calls have infinite duration. Therefore, once a cell accepts a call, no neighboring
cell can accept a call thereafter. The natural greedy algorithm Greedy accepts a call,
whenever this is possible. That is, a call in cell C is accepted if no neighboring cell of C
has previously accepted a call.

A

B

D

C
A

B C

D

Figure 1: The solutions Greedy (left) and Opt (right)

By accepting a call, Greedy can prevent itself from accepting at most 3 subsequent calls.
This is shown in Figure 1. Assume that there are four calls, the first one in A, then three
non-interfering ones in neighboring cells B, C, and D. Greedy accepts the first and has
benefit 1. Opt rejects the first call, but accepts the remaining three, resulting in a benefit
of 3. The algorithm is 3-competitive.

b) There is no competitive algorithm if calls can have arbitrary durations. We show this,
again, by designing a “cruel” input sequence. Assume that the first call arrives in A and
has arbitrary duration. There are two possible actions for an algorithm Alg.

If Alg rejects this call, no further calls will arrive and therefore benefit(Alg) = 0. The
optimal algorithm would have accepted the call, i.e., benefit(Opt) = 1. The competitive
ratio is infinitely large.

On the other hand, if Alg accepts the call, there will be infinitely many calls coming
in state B, each of which has very short duration ε. While Alg cannot accept any of
these calls (because the call in A has infinite duration), the optimal algorithm rejects the
first call and accepts all subsequent calls. This yields benefit(Alg) = 1 as opposed to
benefit(Opt) = β, for an arbitrarily large value of β.

2 Power-Down Mechanisms

As mentioned in the hint, we only focus on a single idle period because if we know that our
algorithm is c-competitive for any idle period, we also know that it is c-competitive for the
complete busy sequence.

a) Analogously to the 2-competitive ski-rental online algorithm, we consider an algorithm Alg
that powers down after D time units. To see that Alg is 2-competitive, we distinguish
two cases for the length of the current idle period T :

• T < D: The energy consumed by both algorithms is cAlg = cOpt = T , hence the
competitive ratio is c = T/T = 1.

• T ≥ D: We have cAlg = D+D since Alg waits D time units and then powers-down
and cOpt = D because Opt powers down immediately. Hence we get

c =
2D

D
= 2 .

2

b) Let Alg be any deterministic power down algorithm. Then Alg is fully specified by the
time tAlg after which it powers down in an idle period. The “worst” idle period ends
immediately after Alg has powered down, that is we have T = tAlg + ε. Again, we
distinguish two cases with respect to the time tAlg when Alg powers down.

• tAlg < D: We have cAlg = tAlg + ε+D and cOpt = tAlg + ε, hence

c =
tAlg + ε+D

tAlg + ε
= 1 +

D

tAlg + ε
> 2 for ε→ 0

since tAlg < D.

• tAlg ≥ D: We have cAlg = tAlg + ε+D again and cOpt = D, hence

c =
tAlg + ε+D

D
= 1 +

tAlg + ε

D
≥ 2 for ε→ 0

since tAlg ≥ D.

Hence, Alg cannot be better than 2-competitive.

c) Let Alg be a randomised algorithm that powers down at time 2
3D with probability 1

2 and
at time D otherwise. Let CAlg be a random variable for the cost incurred by the algorithm.
We again consider an arbitrary idle period of length T . We distinguish three cases:

• T < 2
3D: The energy consumption of both algorithms is cAlg = cOpt = T , hence

c = T/T = 1 < 2.

• 2
3D ≤ T < D: The expected energy consumption of Alg is

E[CAlg] =
1

2

(
2

3
D +D

)
+

1

2
T =

5

6
D +

1

2
T

and further cOpt = T . Hence we get

c =
5
6D + 1

2T

T
=

1

2
+

5

6
· D
T
≤ 1

2
+

5

6
· D2

3D
=

1

2
+

5

4
=

7

4
< 2 .

• T ≥ D: We have for the expected energy consumption of Alg

E[CAlg] =
1

2

(
2

3
D +D

)
+

1

2
(D +D) =

5

6
D +D =

11

6
D

and further cOpt = D. Hence we get

c =
11
6 D

D
=

11

6
< 2 .

Hence, the randomised algorithm is 11
6 -competitive which is better than any deterministic

algorithm.

Note: This result, however, is not optimal yet. The best randomised algorithm uses a con-
tinuous probability distribution for the shutdown time and thereby achieves a competitive
ratio of e/(e− 1) ≈ 1.58.

3

