
Computer Engineering and
Networks Laboratory

HS 2010 Dr. K. Lampka

Discrete Event Systems
Exercise Sheet 14

1 Computation Tree Logic Model Checking

Remember the following Kripke structure from the last exercise

K :=


States := {1, 2, 3, 4}
S0 := {s0} = {1}
→:= {(1, 3), (3, 2), (2, 1), (2, 4), (4, 2)}
AP := {green, yellow, red,black}
L := {1 7→ red, 2 7→ yellow, 3 7→ green, 4 7→ black}


along with the following – syntactically correct – CTL formulas:

Ω1 = ∃2green Ω4 = ∀(black
⋃

black)

Ω2 = ∀2yellow Ω5 = ∀(¬yellow
⋃

(∃© black))

Ω3 = ∀3black Ω6 = ∃(black
⋃

black)

a) Transform the syntactically correct CTL formulas into existential normal form (ENF).

b) Construct the syntax trees for the ENFs of the syntactically correct CTL formulas.

c) Annotate the nodes in the syntax trees with the satisfiability sets Sat(Ω) w.r.t. to K.

d) Which of these formulas are satisfied by K, i.e. for which formulas Ω do we have K |= Ω?
Justify your answers.

e) Give counter-examples for the unsatisfiable formulas starting with the universal quantifier.

2 Timed Automata

Remark: You can download the JAVA-based timed model checker Uppaal from: http://www.
uppaal.com, where you also find some tutorials. This high-level modeling tool makes use of
Timed Automata and allows you to solve the following exercises, but its use is not mandatory;
you may also solve the exercise, at least the most important parts, with pen and paper only.

2.1 Modeling of task activation patterns with Timed Automata

Scheduling analysis of real-time tasks employs so called PJD traffic models. A PJD-model
represents periodic task activations, denoted as task releases, with a jitter. It is defined by
the following three paramters: P stands for the period of a task’s activation, J refers to the
jitter which is a bounded delay by which the task’s ideal periodic activation might be delayed.
Parameter D refers to the minimal distance of any two consecutive task activations. In addition

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
���

�������������������������
�������������������������
��

���������������
���������������
���������������

Offset <= P

J

points in time where event
generation has to take place

t = 0

t

Offset <= P

t

Offset <= P P

event generation takes place
time windows where

t

P P

P J

P P P

J

Scenario (A): J = 0
P

Scenario (B): J <= P

Scenario (C): J >=P

Figure 1: PJD-based activation patterns

the task’s activation may be equipped with an initial offset. An example of a PJD activation
scheme over the time-line is depicted in Fig. 1, the arrows indicate a task activation. Please note,
with scenario (A) the n’th release has to happen exactly at time offset+n ·P . With scenario (B)
and (C) the release has to take place once per hatched area, the exact placement is, however,
not known. Such situations are referred to as being non-deterministic, i.e., the choice where to
activate the task is non-deterministically chosen by the model checker.
The scenario depicted in Fig. 1 (Scenario (A)), is modeled by the TA of Fig. 2.

Please extend the TA of Fig. 2, such that it implements scenario (B) of Fig. 1 where J < P,D = 0
holds.

[x <= P]

[x <= P]
event!, x := 0

event!, x := 0

x >= P
L1L0

Figure 2: TA modeling the PJD task activation scheme for J = D = 0

Supplement: Jitter larger than the period (difficult!)

Extend your solution such that the specified TA models a PJD-pattern where J > P and D = 0
holds. Note, you need to track the number of elapsed periods (= number of releases), and the
number of pending releases (activations not emitted so far).

2.2 Scheduling with Timed Automata: Modeling

Four tasks are supposed to be executed on a single processing device. These tasks are specified
by the following parameters:

2

Task BC WC P
P1 2 2 5 BC = best case execution time,
P2 2 3 17 WC = worst case execution time,
P3 3 3 23 P = periodic activation
P4 2 3 100

The tasks are activated according to a PJD traffic model with the above given period; for
simplicity we assume that J = D = 0 holds for now.

a) Please model this scenario as a non-preemptive system. The goal of the modeling and
analysis is now to check, whether the tasks can be executed on a single resource without
a deadline miss or not. The obtained sequence of task activations which avoids deadline
miss, if it exists, is commonly denoted as schedule. Hint: Each task activation should
be modeled by a separate TA. The task-activation of task Pi should be triggered by a
TA which implements the respective PJD model. Furthermore you also need to model
the resource which coordinates and realizes the execution of the tasks. Resource access is
granted arbitrarily.

b) The deadline of a task’s n’th invocation, i.e., the time the processing of a task has to be
finished, equals the task’s period; the n’th invocation of a task has to be processed at time
offset + (n + 1)P .

(i) Which property allows one to assert this behaviour?

(ii) Please specify an obsever TA which flags the violation of this property.

Hint: A deadline is is missed if there is more than one task activation queued in the system
for being processed.

2.3 Scheduling with Timed Automata: Model-checking

For the following exercise you have to use Uppaal.

a) Is the system from above free of deadline misses (schedulable)?

b) Extend the system from above such that task Pi has priority over task Pi+1. Is this system
still free of deadline misses (schedulable)? In fact you can answer the question without
modeling this scenario, as the choice which task to serve next is non-deterministically
taken, i.e., it is left to the model checker. Why is an additional analysis of this scenario
not necessary?

c) Assume that the priorities defined above are present and that the deadlines are dropped,
resp. set to ∞. The task releases may show now the following jitters: J1 := 10, J2 :=
14, J3 := 20, J4 := 97.

(i) What is the maximum number of tasks activations (= number of issued releases) of
task P1 waiting in the system for being processed?

(ii) What is the maximal delay between a release of task 1 and the termination of the
associated execution. Hint: for solving this question you need to specify a respective
observer TA.

d) Given that J1 = 20. Is it possible that there are more than 5 pending releases for task T2,
T3 and T4 in the system?

3

