Eidgenössische Technische Hochschule Zürich
Distributed
Swiss Federal Institute of Technology Zurich

Ad Hoc And Sensor Networks Sample Solution to Exercise 7

Assigned: November 8, 2010
Due: November 15, 2010

1 Slotted Aloha

We define the function $P: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as

$$
P(p, n):=\operatorname{Pr} \text { success }=n \cdot p(1-p)^{n-1}
$$

For a fixed $p, P(p, n)$ is monotone increasing for $n \leq-1 / \ln (1-p)$ and monotone decreasing for $n \geq-1 / \ln (1-p)$ and therefore $P(p, n)$ is minimized either at $n=A$ or at $n=B$ for $n \in[A, B]$. Therefore, we have to find

$$
p_{\mathrm{opt}}:=\max _{p}(\min \{P(p, A), P(p, B)\}) .
$$

For a fixed $n, P(p, n)$ is monotone increasing for $p \leq 1 / n$ and monotone decreasing for $p \geq 1 / n$ (for $p \in[0,1]$). Furthermore, $P(1 / A, A) \geq P(1 / A, B)$ and $P(1 / B, B) \geq P(1 / B, A)$ for $B \geq A+1$ and therefore the intersection between $P(p, A)$ and $P(p, B)$ is between the maxima of $P(p, A)$ and $P(p, B)$, respectively. Thus p_{opt} is found where $P\left(p_{\mathrm{opt}}, A\right)=P\left(p_{\mathrm{opt}}, B\right)$.

$$
\begin{aligned}
A * p_{\mathrm{opt}} *\left(1-p_{\mathrm{opt}}\right)^{A-1} & =B * p_{\mathrm{opt}} *\left(1-p_{\mathrm{opt}}\right)^{B-1} \\
\frac{A}{B} & =\left(1-p_{\mathrm{opt}}\right)^{B-1-(A-1)}=\left(1-p_{\mathrm{opt}}\right)^{B-A} \\
p_{\mathrm{opt}} & =1-\sqrt[B-A]{\frac{A}{B}} .
\end{aligned}
$$

For $A=100$ and $B=200$, we get

$$
p_{\mathrm{opt}}=0.006908=\frac{1}{144.8} .
$$

2 Broadcast

Student A is right.
An exemplary algorithm:
Source originating the broadcast: Transform the message m as follows: Replace a 1 with 10 and append 11 at the end and at the front of a message, i.e. message $m=10110$ becomes message $m^{\prime}=1110010100$ 11. Transmit "Hello" in round i if bit i of m^{\prime} is 1 . If a node is not the source it waits until it detects twice a non-free channel for two consecutive rounds. It decodes a non-free channel as 1 and a free channel as 0 . It can easily reconstruct the message m by ignoring 11 at the beginning and end and replacing 10 with 1 for the bits received in between the first received 11 and the second 11. As soon as a node decoded the entire message m, it starts to transmit the same m^{\prime} in the same way as the source.

