
Distributed Systems – Roger Wattenhofer – 7/1

Fault-Tolerance: Practice
Chapter 7

Distributed Systems – Roger Wattenhofer – 7/2

Overview

• Introduction

• Crash Failures
– Primary Copy

– Two-Phase Commit

– Three-Phase Commit

• Crash-Recovery Failures
– Paxos

– Chubby

• Practical Byzantine Fault-Tolerance

• Large-scale Fault-Tolerant Systems

Distributed Systems – Roger Wattenhofer – 7/3

Computability vs. Efficiency

• In the last part, we studied computability
– When is it possible to guarantee consensus?

– What kind of failures can be tolerated?

– How many failures can be tolerated?

• In this part, we consider practical solutions
– Simple approaches that work well in practice

– Focus on efficiency

0 1 1 0 1 0
1Worst-case

scenarios!

Distributed Systems – Roger Wattenhofer – 7/4

Fault-Tolerance in Practice

• So far, we studied how to reach consensus in theory

• Why do we need consensus?

• Fault-Tolerance is achieved through replication

???

Replicated
data

Distributed Systems – Roger Wattenhofer – 7/5

State Replication

• The state of each server has to be updated in the same way

• This ensures that all servers are in the same state whenever all updates
have been carried out!

• The servers have to agree on each update

� Consensus has to be reached for each update!

A B …A C

A B …A

C

A B …AC

C

Distributed Systems – Roger Wattenhofer – 7/6

From Theory to Practice

• We studied a lot of theoretical concepts
– Communication: Synchronous vs. asynchronous

– Communication: Message passing vs. shared memory

– Failures: Crash failures vs. Byzantine behavior

• How do these concepts translate to the real world?
– Communication is often not synchronous, but not completely asynchronous

either � There may be reasonable bounds on the message delays
– Practical systems often use message passing. The machines wait for the

response from another machine and abort/retry after time-out

– Failures: It depends on the application/system what kind of failures have to
be handled…

Depends on the
bounds on the

message delays!

Distributed Systems – Roger Wattenhofer – 7/7

From Theory to Practice

• We studied some impossibility results
– Impossible to guarantee consensus using a

deterministic algorithm in asynchronous systems
even if only one node is faulty

• But we want to solve consensus in asynchronous
systems!

• So, how do we go from theory to practice…?
– Real-world algorithms also make assumptions

about the system

– These assumptions allow us to circumvent the
lower bounds!

• In the following, we discuss techniques/algorithms
that are (successfully) used in practical systems

– We will also talk about their assumptions and guarantees

Distributed Systems – Roger Wattenhofer – 7/8

Replication is Expensive

• Reading a value is simple � Just query any server

• Writing is more work � Inform all servers about the update
– What if some servers are not available?

Read: Write:

r

w w
w
w

w

Distributed Systems – Roger Wattenhofer – 7/9

Primary Copy

• Can we reduce the load on the clients?

• Yes! Write only to one server, the primary copy, and let it distribute the
update

– This way, the client only sends one message in order to read and write

Read: Write:
Primary

copy

w
w

w

w

w

r

Distributed Systems – Roger Wattenhofer – 7/10

Problem with Primary Copy

• If the clients can only send read requests to the primary copy, the system
stalls if the primary copy fails

• However, if the clients can also send read requests to the other servers,
the clients may not have a consistent view

w

w

w

r

Reads an
outdated value!!!

Distributed Systems – Roger Wattenhofer – 7/11

Transactions

• In order to achieve consistency, updates have to be atomic

• A write has to be an atomic transaction
– Updates are synchronized

• Either all nodes (servers) commit a transaction or all abort

• How do we handle transactions in asynchronous systems?
– Unpredictable messages delays!

• Moreover, any node may fail…
– Recall that this problem cannot

be solved in theory!

Long delay

Short delay

Distributed Systems – Roger Wattenhofer – 7/12

Two-Phase Commit (2PC)

• A widely used protocol is the so-called two-phase commit protocol

• The idea is simple: There is a coordinator that coordinates the transaction
– All other nodes communicate only with the coordinator

– The coordinator communicates the final decision

Coordinator

Distributed Systems – Roger Wattenhofer – 7/13

Two-Phase Commit: Failures

• Fail-stop model: We assume that a failed node does not re-emerge

• Failures are detected (instantly)
– E.g. time-outs are used in practical systems to detect failures

• If the coordinator fails, a new coordinator takes over (instantly)
– How can this be accomplished reliably?

Coordinator New
coordinator

Distributed Systems – Roger Wattenhofer – 7/14

Two-Phase Commit: Protocol

• In the first phase, the coordinator asks if all nodes are ready to commit

• In the second phase, the coordinator sends the decision (commit/abort)
– The coordinator aborts if at least one node said no

Coordinator

ready

ready

ready

ready

yes
yes

yes no

Coordinator

abort abort

abort abort

ack ack

ack ack

Distributed Systems – Roger Wattenhofer – 7/15

Two-Phase Commit: Protocol

Phase 1:

Coordinator sends ready to all nodes

If a node receives ready from the coordinator:
If it is ready to commit

Send yes to coordinator
else

Send no to coordinator

Distributed Systems – Roger Wattenhofer – 7/16

Two-Phase Commit: Protocol

Phase 2:

If the coordinator receives only yes messages:
Send commit to all nodes

else
Send abort to all nodes

If a node receives commit from the coordinator:
Commit the transaction

else (abort received)
Abort the transaction

Send ack to coordinator

Once the coordinator received all ack messages:
It completes the transaction by committing or aborting itself

Distributed Systems – Roger Wattenhofer – 7/17

Two-Phase Commit: Analysis

• 2PC obviously works if there are no failures

• If a node that is not the coordinator fails, it still works
– If the node fails before sending yes/no, the coordinator can either ignore it or

safely abort the transaction

– If the node fails before sending ack, the coordinator can still commit/abort
depending on the vote in the first phase

Distributed Systems – Roger Wattenhofer – 7/18

Two-Phase Commit: Analysis

• What happens if the coordinator fails?

• As we said before, this is (somehow) detected and a new coordinator
takes over

• How does the new coordinator proceed?
– It must ask the other nodes if a node has already received a commit

– A node that has received a commit replies yes,
otherwise it sends no and promises not to accept
a commit that may arrive from the old coordinator

– If some node replied yes, the new
coordinator broadcasts commit

• This works if there is only one failure

• Does 2PC still work with multiple failures…?

This safety mechanism
is not a part of 2PC…

Distributed Systems – Roger Wattenhofer – 7/19

Two-Phase Commit: Multiple Failures

• As long as the coordinator is alive, multiple failures are no problem
– The same arguments as for one failure apply

• What if the coordinator and another node crashes?

The nodes cannot commit! The nodes cannot abort!

yes

yes

no
abort

Aborted!

commit or
abort???

commit or
abort???

yes

yes

yes
commit

commit or
abort???

commit or
abort???

Committed!

Distributed Systems – Roger Wattenhofer – 7/20

Two-Phase Commit: Multiple Failures

• What is the problem?
– Some nodes may be ready to commit while others have already committed or

aborted

– If the coordinator crashes, the other nodes are not informed!

• How can we solve this problem?

The remaining
nodes cannot make

a decision!yes

yes

Yes/ no

commit/
abort

Committed/Aborted!

…???

…???

Distributed Systems – Roger Wattenhofer – 7/21

Three-Phase Commit

• Solution: Add another phase to the protocol!
– The new phase precedes the commit phase

– The goal is to inform all nodes that all are ready to commit (or not)

– At the end of this phase, every node knows whether or not all nodes want to
commit before any node has actually committed or aborted!

• This protocol is called the three-phase commit (3PC) protocol

This solves the
problem of 2PC!

Distributed Systems – Roger Wattenhofer – 7/22

Three-Phase Commit: Protocol

• In the new (second) phase, the coordinator sends prepare (to commit)
messages to all nodes

Coordinator

ready

ready

ready

ready

yes
yes

yes

yes

Coordinator

commit

commit

commit

commit

ackC
ackC

ackC

ackC

Coordinator

prepare

prepare

prepare

prepare

ack
ack

ack

ack

acknowledge
commit

Distributed Systems – Roger Wattenhofer – 7/23

Three-Phase Commit: Protocol

Phase 1:

Coordinator sends ready to all nodes

If a node receives ready from the coordinator:
If it is ready to commit

Send yes to coordinator
else

Send no to coordinator

The first phase of 2PC
and 3PC are identical!

Distributed Systems – Roger Wattenhofer – 7/24

Three-Phase Commit: Protocol

Phase 2:

If the coordinator receives only yes messages:
Send prepare to all nodes

else
Send abort to all nodes

If a node receives prepare from the coordinator:
Prepare to commit the transaction

else (abort received)
Abort the transaction

Send ack to coordinator

This is the new phase

Distributed Systems – Roger Wattenhofer – 7/25

Three-Phase Commit: Protocol

Phase 3:

Once the coordinator received all ack messages:
If the coordinator sent abort in Phase 2

The coordinator aborts the transaction as well
else (it sent prepare)

Send commit to all nodes

If a node receives commit from the coordinator:
Commit the transaction
Send ackCommit to coordinator

Once the coordinator received all ackCommit messages:
It completes the transaction by committing itself

Distributed Systems – Roger Wattenhofer – 7/26

Three-Phase Commit: Analysis

• All non-faulty nodes either commit or abort
– If the coordinator doesn’t fail, 3PC is correct because the coordinator lets all

nodes either commit or abort
Termination can also be guaranteed: If some node fails before sending
yes/no, the coordinator can safely abort. If some node fails after the
coordinator sent prepare, the coordinator can still enforce a commit because
all nodes must have sent yes

– If only the coordinator fails, we again don’t have a problem because the new
coordinator can restart the protocol

– Assume that the coordinator and some other nodes failed and that some
node committed. The coordinator must have received ack messages from all
nodes � All nodes must have received a prepare message. The new
coordinator can thus enforce a commit. If a node aborted, no node can have
received a prepare message. Thus, the new coordinator can safely abort the
transaction

Distributed Systems – Roger Wattenhofer – 7/27

Three-Phase Commit: Analysis

• Although the 3PC protocol still works if multiple nodes fail, it still has
severe shortcomings

– 3PC still depends on a single coordinator. What if some but not all nodes
assume that the coordinator failed?
� The nodes first have to agree on whether the coordinator crashed or not!

– Transient failures: What if a failed coordinator comes back to life? Suddenly,
there is more than one coordinator!

• Still, 3PC and 2PC are used successfully in practice

• However, it would be nice to have a practical protocol that does not
depend on a single coordinator

– and that can handle temporary failures!

In order to solve consensus, you
first need to solve consensus…

Distributed Systems – Roger Wattenhofer – 7/28

Paxos

• Historical note
– In the 1980s, a fault-tolerant distributed file system called “Echo” was built

– According to the developers, it achieves “consensus” despite any number of
failures as long as a majority of nodes is alive

– The steps of the algorithm are simple if there are no failures and quite
complicated if there are failures

– Leslie Lamport thought that it is impossible to provide guarantees in this
model and tried to prove it

– Instead of finding a proof, he found a much simpler algorithm that works:
The Paxos algorithm

• Paxos is an algorithm that does not rely on a coordinator
– Communication is still asynchronous

– All nodes may crash at any time and they may also recover

fail-recover model

Distributed Systems – Roger Wattenhofer – 7/29

Paxos: Majority Sets

• Paxos is a two-phase protocol, but more resilient than 2PC

• Why is it more resilient?
– There is no coordinator. A majority of the nodes is asked if a certain value can

be accepted

– A majority set is enough because the intersection of two majority sets is not
empty � If a majority chooses one value, no majority can choose another
value!

Majority set

Majority set

Distributed Systems – Roger Wattenhofer – 7/30

Paxos: Majority Sets

• Majority sets are a good idea

• But, what happens if several nodes compete for a majority?
– Conflicts have to be resolved

– Some nodes may have to change their decision

No majority…

No majority…

No majority…

Distributed Systems – Roger Wattenhofer – 7/31

Paxos: Roles

• Each node has one or more roles:

• Proposer
– A proposer is a node that proposes a certain value for acceptance

– Of course, there can be any number of proposers at the same time

• Acceptor
– An acceptor is a node that receives a proposal from a proposer

– An acceptor can either accept or reject a proposal

• Learner
– A learner is a node that is not involved in the decision process

– The learners must learn the final result from the proposers/acceptors

There are three roles

Distributed Systems – Roger Wattenhofer – 7/32

Paxos: Proposal

• A proposal (x,n) consists of the proposed value x and a proposal number n

• Whenever a proposer issues a new proposal, it chooses a larger (unique)
proposal number

• An acceptor accepts a proposal (x,n) if n is larger than any proposal
number it has ever heard

• An acceptor can accept any number of proposals
– An accepted proposal may not necessarily be chosen

– The value of a chosen proposal is the chosen value

• An acceptor can even choose any number of proposals
– However, if two proposals (x,n) and (y,m) are chosen,

then x = y

Give preference to larger
proposal numbers!

Consensus: Only one
value can be chosen!

Distributed Systems – Roger Wattenhofer – 7/33

Paxos: Prepare

• Before a node sends propose(x,n), it sends prepare(x,n)
– This message is used to indicate that the node wants to propose (x,n)

• If n is larger than all received request numbers, an acceptor returns the
accepted proposal (y,m) with the largest request number m

– If it never accepted a proposal, the acceptor returns (Ø,0)

– The proposer learns about accepted proposals!
Note that m < n!

Majority set

prepare(x,n)

prepare(x,n)

prepare(x,n)

prepare(x,n)

Majority set

acc(y,m)

acc(z,l)

acc(Ø,0)

This is the first phase!

Distributed Systems – Roger Wattenhofer – 7/34

Paxos: Propose

• If the proposer receives all replies, it sends a proposal

• However, it only proposes its own value, if it only received acc(Ø,0),
otherwise it adopts the value y in the proposal with the largest request
number m

– The proposal still contains its sequence number n, i.e., (y,n) is proposed

• If the proposer receives all acknowledgements ack(y,n), the proposal is
chosen

This is the second phase!

Majority set

propose(y,n)

propose(y,n)

propose(y,n)

propose(y,n)

Majority set

(y,n) is
chosen! ack(y,n)

ack(y,n)

ack(y,n)

ack(y,n)

Distributed Systems – Roger Wattenhofer – 7/35

Paxos: Algorithm of Proposer

Proposer wants to propose (x,n):

Send prepare(x,n) to a majority of the nodes
if a majority of the nodes replies then

Let (y,m) be the received proposal with the largest request number
if m = 0 then (No acceptor ever accepted another proposal)

Send propose(x,n) to the same set of acceptors
else

Send propose(y,n) to the same set of acceptors

if a majority of the nodes replies with ack(y,n)
The proposal is chosen!

After a time-out, the proposer gives
up and may send a new proposal

The value of the proposal
is also chosen!

Distributed Systems – Roger Wattenhofer – 7/36

Paxos: Algorithm of Acceptor

Initialize and store persistently:

nmax := 0
(xlast,nlast) := (Ø,0)

Acceptor receives prepare (x,n):

if n > nmax then
nmax := n
Send acc(xlast,nlast) to the proposer

Acceptor receives proposal (x,n):

if n = nmax then
xlast := x
nlast := n
Send ack(x,n) to the proposer

Last accepted proposal

Largest request number ever received

Why persistently?

Distributed Systems – Roger Wattenhofer – 7/37

Paxos: Spreading the Decision

• After a proposal is chosen, only the proposer knows about it!

• How do the others (learners) get informed?

• The proposer could inform all learners directly
– Only n-1 messages are required

– If the proposer fails, the learners are not informed
(directly)…

• The acceptors could broadcast every time they
accept a proposal

– Much more fault-tolerant

– Many accepted proposals may not be chosen…

– Moreover, choosing a value costs O(n2) messages
without failures!

• Something in the middle?
– The proposer informs b nodes and lets them

broadcast the decision

(x,n) is
chosen!

Trade-off: fault-tolerance vs. message complexity

Accepted
(x,n)!

(x,n)

Distributed Systems – Roger Wattenhofer – 7/38

Paxos: Agreement

Proof:

• Assume that there are proposals (y,m) for which m > n and x ≠ y. Consider
the proposal with the smallest proposal number m

• Consider the non-empty intersection S of the two sets of nodes that
function as the acceptors for the two proposals

• Proposal (x,n) has been accepted � Since m > n, the nodes in S must have
received prepare(y,m) after (x,n) has been accepted

• This implies that the proposer of (y,m) would also propose the value x
unless another acceptor has accepted a proposal (z,l), z ≠ x and n < l < m

• However, this means that some node must have proposed (z,l), a
contradiction because l < m and we said that m is the smallest p.n.!

Lemma

If a proposal (x,n) is chosen, then for every issued
proposal (y,m) for which m > n it holds that x = y

Distributed Systems – Roger Wattenhofer – 7/39

Paxos: Theorem

Proof:

• Once a proposal (x,n) is chosen, each proposal (y,m) that is sent
afterwards has the same proposal number, i.e., x = y according to the
lemma on the previous slide

• Since every subsequent proposal has the same value x, every proposal
that is accepted after (x,n) has been chosen has the same value x

• Since no other value than x is accepted, no other value can be chosen!

Theorem

If a value is chosen, all nodes choose this value

Distributed Systems – Roger Wattenhofer – 7/40

Paxos: Wait a Minute…

• Paxos is great!

• It is a simple, deterministic algorithm that works in
asynchronous systems and tolerates f < n/2 failures

• Is this really possible…?

• Does Paxos contradict this lower bound…?

Theorem

A deterministic algorithm cannot guarantee
consensus in asynchronous systems even if

there is just one faulty node

Distributed Systems – Roger Wattenhofer – 7/41

Paxos: No Liveness Guarantee

• The answer is no! Paxos only guarantees that if a value is chosen, the other
nodes can only choose the same value

• It does not guarantee that a value is chosen!

prepare(x,1)

acc(Ø,0)

propose(x,1)

prepare(y,2)

acc(Ø,0)

propose(y,2)

prepare(x,3)

acc(Ø,0)

prepare(y,4)

acc(Ø,0)

Time-out!

Time-out!

time

Distributed Systems – Roger Wattenhofer – 7/42

Paxos: Agreement vs. Termination

• In asynchronous systems, a deterministic consensus algorithm cannot have
both, guaranteed termination and correctness

• Paxos is always correct. Consequently, it cannot guarantee that the
protocol terminates in a certain number of rounds

• Although Paxos may not terminate in theory, it is quite efficient in practice
using a few optimizations

Termination is sacrificed
for correctness…

How can Paxos
be optimized?

Distributed Systems – Roger Wattenhofer – 7/43

Paxos in Practice

• There are ways to optimize Paxos by dealing with some practical issues
– For example, the nodes may wait for a long time until they decide to try to

submit a new proposal

– A simple solution: The acceptors send NAK if they do not accept a prepare
message or a proposal. A node can then abort immediately

– Note that this optimization increases the message complexity…

• Paxos is indeed used in practical systems!
– Yahoo!’s ZooKeeper: A management service for large distributed systems uses a

variation of Paxos to achieve consensus

– Google’s Chubby: A distributed lock service library. Chubby stores lock
information in a replicated database to achieve high availability. The database
is implemented on top of a fault-tolerant log layer based on Paxos

Distributed Systems – Roger Wattenhofer – 7/44

Paxos: Fun Facts

• Why is the algorithm called Paxos?

• Leslie Lamport described the algorithm as the solution to a
problem of the parliament on a fictitious Greek island called Paxos

• Many readers were so distracted by the description of the
activities of the legislators, they did not understand the meaning
and purpose of the algorithm. The paper was rejected

• Leslie Lamport refused to rewrite the paper. He later wrote that he

“was quite annoyed at how humorless everyone working in the
field seemed to be”

• After a few years, some people started to understand the
importance of the algorithm

• After eight years, Leslie Lamport submitted the paper again,
basically unaltered. It got accepted!

Distributed Systems – Roger Wattenhofer – 7/45

Chubby

• Chubby is a coarse-grained distributed lock service
– Coarse-grained: Locks are held for hours or even days

• Chubby allows clients to synchronize activities
– E.g., synchronize access through a leader in a distributed system

– The leader is elected using Chubby: The node that gets the lock for this
service becomes the leader!

• Design goals are high availability and reliability
– High performance is not a major issue

• Chubby is used in many tools, services etc. at Google
– Google File System (GFS)

– BigTable (distributed database)

Distributed Systems – Roger Wattenhofer – 7/46

Chubby: System Structure

• A Chubby cell typically consists of 5 servers
– One server is the master, the others are replicas

– The clients only communicate with the master

– Clients find the master by sending master location requests to some replicas
listed in the DNS

Replica

Master

Client

Chubby cell

DNS

Distributed Systems – Roger Wattenhofer – 7/47

Chubby: System Structure

• The master handles all read accesses

• The master also handles writes
– Copies of the updates are sent to the replicas

– Majority of replicas must acknowledge receipt of update before master writes
its own value and updates the official database

Update!

update

Distributed Systems – Roger Wattenhofer – 7/48

Chubby: Master Election

• The master remains the master for the duration of the master lease
– Before the lease expires, the master can renew it (and remain the master)

– It is guaranteed that no new master is elected before the lease expires

– However, a new master is elected as soon as the lease expires

– This ensures that the system does not freeze (for a long time) if the master
crashed

• How do the servers in the Chubby cell agree on a master?

• They run (a variant of) the Paxos algorithm!

Distributed Systems – Roger Wattenhofer – 7/49

Chubby: Locks

• Locks are advisory (not mandatory)
– As usual, locks are mutually exclusive

– However, data can be read without the lock!

– Advisory locks are more efficient than mandatory locks (where any access
requires the lock): Most accesses are reads! If a mandatory lock is used and
the lock holder crashes, then all reads are stalled until the situation is
resolved

– Write permission to a resource is required to obtain a lock

Advisory: Mandatory:

service

lock
holder read

read read

service

lock
holder

Chubby cell

Distributed Systems – Roger Wattenhofer – 7/50

Chubby: Sessions

• What happens if the lock holder crashes?

• Client initially contacts master to establish a session
– Session: Relationship between Chubby cell and Chubby client

• Each session has an associated lease
– The master can extend the lease, but it may not revoke the lease

– Longer lease times if the load is high

• Periodic KeepAlive (KA) handshake to maintain relationship
– The master does not respond until the client’s previous lease is close to

expiring

– Then it responds with the duration of the new lease

– The client reacts immediately and issues the next KA

• Ending a session
– The client terminates the session explicitly

– or the lease expires

master

client

lease 1

lease 1

lease 2

lease 2

KA KAreply

Distributed Systems – Roger Wattenhofer – 7/51

Chubby: Lease Timeout

• The client maintains a local lease timeout
– The client knows (roughly) when it has to hear from the master again

• If the local lease expires, the session is in jeopardy

• As soon as a session is in jeopardy, the grace period (45s by default) starts
– If there is a successful KeepAlive exchange before the end of the grace period,

the session is saved!

– Otherwise, the session expired

• This might happen if the master crashed…

Time when
lease expires

Distributed Systems – Roger Wattenhofer – 7/52

Chubby: Master Failure

• The grace period can save sessions

• The client finds the new master using a master location request

• Its first KA to the new master is denied (*) because the new master has a
new epoch number (sometimes called view number)

• The next KA succeeds with the new number

Old master New master

client

lease 1

lease 1

lease 2

lease 2 grace period

jeopardy safe

lease 3

lease 3

KA KA KA KAreply * reply

Distributed Systems – Roger Wattenhofer – 7/53

Chubby: Master Failure

• A master failure is detected once the master lease expires

• A new master is elected, which tries to resume exactly where the old
master left off

– Read data that the former master wrote to disk (this data is also replicated)

– Obtain state from clients

• Actions of the new master
1. It picks a new epoch number

– It only replies to master location requests

2. It rebuilds the data structures of the old master

– Now it also accepts KeepAlives

3. It inform all clients about failure � Clients flush cache
– All operations can proceed

We omit
caching in

this lecture!

Distributed Systems – Roger Wattenhofer – 7/54

Chubby: Locks Reloaded

• What if a lock holder crashes and its (write) request is still in transit?
– This write may undo an operation of the next lock holder!

• Heuristic I: Sequencer
– Add a sequencer (which describes the state of the lock) to the access requests

– The sequencer is a bit string that contains the name of lock, the mode
(exclusive/shared), and the lock generation number

– The client passes the sequencer to server. The server is expected to check if
the sequencer is still valid and has the appropriate mode

• Heuristic II: Delay access
– If a lock holder crashed, Chubby blocks the lock for a period called the lock

delay

serviceold lock
holder

new lock
holder

x:=10x:=7

Distributed Systems – Roger Wattenhofer – 7/55

Chubby: Replica Replacement

• What happens when a replica crashes?
– If it does not recover for a few hours, a replacement system selects a fresh

machine from a pool of machines

– Subsequently, the DNS tables are updated by replacing the IP address of the
failed replica with the new one

– The master polls the DNS periodically and eventually notices the change

Chubby cell

Replacement
system

free pool

DNS

Distributed Systems – Roger Wattenhofer – 7/56

Chubby: Performance

• According to Chubby…
– Chubby performs quite well

• 90K+ clients can communicate with a single Chubby master (2 CPUs)

• System increases lease times from 12s up to 60s under heavy load

• Clients cache virtually everything

• Only little state has to be stored
– All data is held in RAM (but also persistently stored on disk)

Distributed Systems – Roger Wattenhofer – 7/57

Practical Byzantine Fault-Tolerance

• So far, we have only looked at systems that deal with simple (crash) failures

• We know that there are other kind of failures:

Crash / Fail-stop
Omission of

messages
Arbitrary failures,

authenticated messages Arbitrary failures

Distributed Systems – Roger Wattenhofer – 7/58

Practical Byzantine Fault-Tolerance

• Is it reasonable to consider Byzantine behavior in practical systems?

• There are several reasons why clients/servers may behave “arbitrarily”
– Malfunctioning hardware

– Buggy software

– Malicious attacks

• Can we have a practical and efficient system that tolerates Byzantine
behavior…?

– We again need to solve consensus…

Distributed Systems – Roger Wattenhofer – 7/59

PBFT

• We are now going to study the Practical Byzantine Fault-Tolerant (PBFT)
system

• The system consists of clients that read/write data stored at n servers

• Goal
– The system can be used to implement any deterministic replicated service

with a state and some operations

– Provide reliability and availability

• Model
– Communication is asynchronous, but message delays are bounded

– Messages may be lost, duplicated or may arrive out of order

– Messages can be authenticated using digital signatures
(in order to prevent spoofing, replay, impersonation)

– At most f < n/3 of the servers are Byzantine

Distributed Systems – Roger Wattenhofer – 7/60

PBFT: Order of Operations

• State replication (repetition): If all servers start in the same state, all
operations are deterministic, and all operations are executed in the same
order, then all servers remain in the same state!

• Variable message delays may be a problem:

… … …

Servers

Clients

A A B BB A

Distributed Systems – Roger Wattenhofer – 7/61

PBFT: Order of Operations

• If messages are lost, some servers may not receive all updates…

…A …A B …B

B

Servers

Clients

…B

Distributed Systems – Roger Wattenhofer – 7/62

PBFT: Basic Idea

• Such problems can be solved by using a coordinator

• One server is the primary
– The clients send signed commands to the primary

– The primary assigns sequence numbers to the commands

– These sequence numbers impose an order on the commands

• The other servers are backups
– The primary forwards commands to the other servers

– Information about commands is replicated at a quorum of backups

• Note that we assume in the following that there are
exactly n = 3f+1 servers!

PBFT is not
decentralized

like Paxos!

Quorum…?

Distributed Systems – Roger Wattenhofer – 7/63

Quorums

• In law, a quorum is a the minimum number of
members of a deliberative body necessary to
conduct the business of the group

– In a majority vote system, e.g., any majority
is a quorum

• In our case, a quorum is any subset of the servers of size at least 2f+1
– The intersection between any two quorums contains at least one correct

server

Quorum 1 Quorum 2

Distributed Systems – Roger Wattenhofer – 7/64

PBFT: Main Algorithm

• PBFT takes 5 rounds of communication

• In the first round, the client sends the command op to the primary

• The following three rounds are
– Pre-prepare

– Prepare

– Propose

• In the fifth round, the client receives replies from the servers
– If f+1 (authenticated) replies are the same, the result is accepted

– Since there are only f Byzantine servers, at least one correct server supports
the result

• The algorithm is somewhat similar to Paxos…

Distributed Systems – Roger Wattenhofer – 7/65

PBFT: Paxos

• In Paxos, there is only a prepare and a propose phase

• The primary is the node issuing the proposal

• In the response phase, the clients learn the final result

Request Prepare Propose Response

Client

Primary

Backup

Backup

Backup

Distributed Systems – Roger Wattenhofer – 7/66

PBFT: Algorithm

• PBFT takes 5 rounds of communication

• The main parts are the three rounds pre-prepare, prepare, and commit

Client

Primary

Backup

Backup

Backup

Request Prepare Commit ResponsePre-Prepare

Distributed Systems – Roger Wattenhofer – 7/67

PBFT: Request Phase

• In the first round, the client sends the command op to the primary

• It also sends a timestamp ts, a client identifier c-id and a signature c-sig

Client

Primary

Backup

Backup

Backup

Request Prepare ResponsePre-Prepare

[op, ts, c-id, c-sig]

Commit

Distributed Systems – Roger Wattenhofer – 7/68

PBFT: Request Phase

• Why adding a timestamp?
– The timestamp ensures that a command is recorded/executed exactly once

• Why adding a signature?
– It is not possible for another client (or a Byzantine server) to issue commands

that are accepted as commands from client c

– The system also performs access control: If a client c is allowed to write a
variable x but c’ is not, c’ cannot issue a write command by pretending to be
client c!

Distributed Systems – Roger Wattenhofer – 7/69

PBFT: Pre-Prepare Phase

• In the second round, the primary multicasts m = [op, ts, cid, c-sig] to the
backups, including the view number vn, the assigned sequence number sn,
the message digest D(m) of m, and its own signature p-sig

Client

Primary

Backup

Backup

Backup

[PP, vn, sn, D(m), p-sig, m]

pre-prepare message

Request Prepare ResponsePre-Prepare Commit

Distributed Systems – Roger Wattenhofer – 7/70

PBFT: Pre-Prepare Phase

• The sequence numbers are used to order the commands and the
signature is used to verify the authenticity as before

• Why adding the message digest of the client’s message?
– The primary signs only [PP, vn, sn, D(m)]. This is more efficient!

• What is a view?
– A view is a configuration of the system. Here we assume that the system

comprises the same set of servers, one of which is the primary

– I.e., the primary determines the view: Two views are different if a different
server is the primary

– A view number identifies a view

– The primary in view vn is the server whose identifier is vn mod n

– Ideally, all servers are (always) in the same view

– A view change occurs if a different primary is elected
More on

view changes
later…

Distributed Systems – Roger Wattenhofer – 7/71

PBFT: Pre-Prepare Phase

• A backup accepts a pre-prepare message if
– the signatures are correct

– D(m) is the digest of m = [op, ts, cid, c-sig]

– it is in view vn

– It has not accepted a pre-prepare message for view number vn and sequence
number sn containing a different digest

– the sequence number is between a low water mark h and a high water mark H

– The last condition prevents a faulty primary from exhausting the space of
sequence numbers

• Each accepted pre-prepare message is stored in the local log

Distributed Systems – Roger Wattenhofer – 7/72

PBFT: Prepare Phase

• If a backup b accepts the pre-prepare message, it enters the prepare
phase and multicasts [P, vn ,sn, D(m), b-id, b-sig] to all other replicas and
stores this prepare message in its log

Client

Primary

Backup

Backup

Backup

Request Prepare Commit ResponsePre-Prepare

[P, vn, sn, D(m), b-id, b-sig]

prepare message

Distributed Systems – Roger Wattenhofer – 7/73

PBFT: Prepare Phase

• A replica (including the primary) accepts a prepare message if
– the signatures are correct

– it is in view vn

– the sequence number is between a low water mark h and a high water mark H

• Each accepted prepare message is also stored in the local log

Distributed Systems – Roger Wattenhofer – 7/74

PBFT: Commit Phase

• If a backup b has message m, an accepted pre-prepare message, and 2f
accepted prepare messages from different replicas in its log, it multicasts
[C, vn, sn, D(m), b-id, b-sig] to all other replicas and stores this commit
message

Client

Primary

Backup

Backup

Backup

[C, vn, sn, D(m), b-id, b-sig]

commit message

Request Prepare Commit ResponsePre-Prepare

Distributed Systems – Roger Wattenhofer – 7/75

PBFT: Commit Phase

• A replica (including the primary) accepts a commit message if
– the signatures are correct

– it is in view vn

– the sequence number is between a low water mark h and a high water mark H

• Each accepted commit message is also stored in the local log

Distributed Systems – Roger Wattenhofer – 7/76

PBFT: Response Phase

• If a backup b has accepted 2f+1 commit messages, it performs op
(“commits”) and sends a reply to the client

Client

Primary

Backup

Backup

Backup

reply message

vn, ts, cid, reply, b-sig]

Request Prepare Commit ResponsePre-Prepare

Distributed Systems – Roger Wattenhofer – 7/77

PBFT: Garbage Collection

• The servers store all messages in their log

• In order to discard messages in the log, the servers create checkpoints
(snapshots of the state) every once in a while

• A checkpoint contains the 2f+1 signed commit messages for the
committed commands in the log

• The checkpoint is multicast to all other servers

• If a server receives 2f+1 matching checkpoint messages, the checkpoint
becomes stable and any command that preceded the commands in the
checkpoint are discarded

• Note that the checkpoints are also used to set the low water mark h
– to the sequence number of the last stable checkpoint

and the high water mark H
– to a “sufficiently large” value

Distributed Systems – Roger Wattenhofer – 7/78

PBFT: Correct Primary

• If the primary is correct, the algorithm works
– All 2f+1 correct nodes receive pre-prepare messages and send prepare

messages

– All 2f+1 correct nodes receive 2f+1 prepare messages and send commit
messages

– All 2f+1 correct nodes receive 2f+1 commit messages, commit, and send a
reply to the client

– The client accepts the result

Client

Primary

Backup

Backup

Backup

Request Prepare Commit ResponsePre-Prepare

Distributed Systems – Roger Wattenhofer – 7/79

PBFT: No Replies

• What happens if the client does not receive replies?
– Because the command message has been lost

– Because the primary is Byzantine and did not forward it

• After a time-out, the client multicasts the command to all servers
– A server that has already committed the result sends it again

– A server that is still processing it ignores it

– A server that has not received the pre-prepare message forwards the
command to the primary

– If the server does not receive the pre-prepare message in return after a
certain time, it concludes that the primary is faulty/Byzantine

This is how a failure of the
primary is detected!

Distributed Systems – Roger Wattenhofer – 7/80

PBFT: View Change

• If a server suspects that the primary is faulty
– it stops accepting messages except checkpoint, view change and new view

messages

– it sends a view change message containing the identifier i = vn+1 mod n of the
next primary and also a certificate for each command for which it accepted
2f+1 prepare messages

– A certificate simply contains the 2f+1 accepted signatures

• When server i receives 2f view change messages from other servers, it
broadcasts a new view message containing the signed view change

• The servers verify the signature and accept the view change!

• The new primary issues pre-prepare messages with the new view number
for all commands with a correct certificate

The next primary!

Distributed Systems – Roger Wattenhofer – 7/81

PBFT: Ordered Commands

• Commands are totally ordered using the view numbers and the sequence
numbers

• We must ensure that a certain (vn,sn) pair is always associated with a
unique command m!

• If a correct server committed [m, vn, sn], then no other correct server can
commit [m’, vn, sn] for any m≠ m’ s.t. D(m) ≠ D(m’)

– If a correct server committed, it accepted a set of 2f+1 authenticated commit
messages

– The intersection between two such sets contains at least f+1 authenticated
commit messages

– There is at least one correct server in the intersection

– A correct server does not issue (pre-)prepare messages with the same vn and
sn for different m!

Distributed Systems – Roger Wattenhofer – 7/82

PBFT: Correctness

Proof:

• A client only accepts a result if it receives f+1 authenticated messages
with the same result

• At least one correct server must have committed this result

• As we argued on the previous slide, no other correct server can commit a
different result

Theorem

If a client accepts a result, no correct server
commits a different result

Distributed Systems – Roger Wattenhofer – 7/83

PBFT: Liveness

Proof:

• The primary is correct
– As we argued before, the algorithm terminates after 5 rounds if no messages

are lost

– Message loss is handled by retransmitting after certain time-outs

– Assuming that messages arrive eventually, the algorithm also terminates
eventually

Theorem

PBFT terminates eventually

Distributed Systems – Roger Wattenhofer – 7/84

PBFT: Liveness

Proof continued:

• The primary is Byzantine
– If the client does not accept an answer in a certain period of time, it sends its

command to all servers

– In this case, the system behaves as if the primary is correct and the algorithm
terminates eventually!

• Thus, the Byzantine primary cannot delay the command indefinitely. As
we saw before, if the algorithm terminates, the result is correct!

– i.e., at least one correct server committed this result

Theorem

PBFT terminates eventually

Distributed Systems – Roger Wattenhofer – 7/85

PBFT: Evaluation

• The Andrew benchmark emulates a software development workload
• It has 5 phases:

1. Create subdirectories recursively
2. Copy a source tree
3. Examine the status of all the files in the tree without examining the data
4. Examine every byte in all the files
5. Compile and link the files

• It is used to compare 3 systems
– BFS (PBFT) and 4 replicas and BFS-nr (PBFT without replication)
– BFS (PBFT) and NFS-std (network file system)

• Measured normal-case behavior (i.e. no view changes) in an isolated
network

Distributed Systems – Roger Wattenhofer – 7/86

PBFT: Evaluation

• Most operations in NFS V2 are not
read-only (r/o)

– E.g., read and lookup modify the
time-last-accessed attribute

• A second version of PBFT has been
tested in which lookups are read-only

• Normal (strict) PBFT is only 26% slower
than PBFT without replication
� Replication does not cost too much!

• Normal (strict) PBFT is only 3% slower than
NFS-std, and PBFT with read-only lookups
is even 2% faster!

Times are in seconds

Distributed Systems – Roger Wattenhofer – 7/87

PBFT: Discussion

• PBFT guarantees that the commands are totally ordered

• If a client accepts a result, it knows that at least one correct server
supports this result

• Disadvantages:

• Commit not at all correct servers
– It is possible that only one correct server commits the command

– We know that f other correct servers have sent commit, but they may only
receive f+1 commits and therefore do not commit themselves…

• Byzantine primary can slow down the system
– Ignore the initial command

– Send pre-prepare always after the other servers forwarded the command

– No correct server will force a view change!

Distributed Systems – Roger Wattenhofer – 7/88

Beating the Lower Bounds…

• We know several crucial impossibiliy results and lower bounds
– No deterministic algorithm can achieve consensus

in asynchronous systems even if only one node may crash

– Any deterministic algorithm for synchronous systems
that tolerates f crash failures takes at least f+1 rounds

• Yet we have just seen a deterministic algorithm/system that
– achieves consensus in asynchronous systems and that

tolerates f < n/3 Byzantine failures

– The algorithm only takes five rounds…?

• So, why does the algorithm work…?

Distributed Systems – Roger Wattenhofer – 7/89

Beating the Lower Bounds…

• So, why does the algorithm work…?

• It is not really an asynchronous system
– There are bounds on the message delays

– This is almost a synchronous system…

• We used authenticated messages
– It can be verified if a server really sent a certain message

• The algorithm takes more than 5 rounds in the worst case
– It takes more than f rounds!

Messages do not just
“arrive eventually”

Why?

Distributed Systems – Roger Wattenhofer – 7/90

Zyzzyva

• Zyzzyva is another BFT protocol

• Idea
– The protocol should be very efficient if there are no failures

– The clients speculatively execute the command without going through an
agreement protocol!

• Problem
– States of correct servers may diverge

– Clients may receive diverging/conflicting responses

• Solution
– Clients detect inconsistencies in the replies and help the correct servers to

converge to a single total ordering of requests

Distributed Systems – Roger Wattenhofer – 7/91

Zyzzyva

• Normal operation: Speculative execution!

• Case 1: All 3f+1 report the same result

Client

Primary

Backup

Backup

Backup

Execute!

Execute!

Execute!

Execute!

Everything’s
ok!

Distributed Systems – Roger Wattenhofer – 7/92

Zyzzyva

• Case 2: Between 2f+1 and 3f results are the same

• The client broadcasts a commit certificate containing the 2f+1 results

• The client commits upon receiving 2f+1 replies

Client

Primary

Backup

Backup

Faulty
Backup

Execute!

Execute!

Execute!

There was a problem,
but it’s fine now…

commit certificate

Distributed Systems – Roger Wattenhofer – 7/93

Zyzzyva

• Case 3: Less than 2f+1 replies are the same

• The client broadcasts its request to all servers

• This step circumvents a faulty primary

Client

Faulty
Primary

Backup

Backup

Backup

Execute!

Let’s try again!

request

Execute!

Execute!

Distributed Systems – Roger Wattenhofer – 7/94

Zyzzyva

• Case 4: The client receives results that indicate an inconsistent ordering
by the primary

• The client can generate a proof
and append it to a view change message!

Client

Primary

Backup

Backup

Backup

Execute!

Execute!

Execute!

Execute!

The primary
messed up…

view change

Distributed Systems – Roger Wattenhofer – 7/95

Zyzzyva: Evaluation

• Zyzzyva outperforms PBFT because it normally takes only 3 rounds!

Distributed Systems – Roger Wattenhofer – 7/96

More BFT Systems in a Nutshell: PeerReview

• The goal of PeerReview is to provide accountability for distributed
systems

– All nodes store I/O events, including all messages,
in a local log

– Selected nodes (“witnesses”) are responsible
for auditing the log

– If the witnesses detect misbehavior,
they generate evidence and
make the evidence available

– Other nodes check the evidence and
report the fault

• What if a node tries to manipulate
its log entries?

– Log entries form a hash chain
creating secure histories

A's log

B's log

A

B

C
D

E

A's witnesses

Distributed Systems – Roger Wattenhofer – 7/97

More BFT Systems in a Nutshell: PeerReview

• PeerReview has to solve the same problems…
– Byzantine nodes must not be able to convince correct nodes that another

correct node is faulty

– The witness sets must always contain at least one correct node

• PeerReview provides the following guarantees:

1. Faults will be detected
– If a node commits a fault and it has a correct witness, then the witness

obtains a proof of misbehavior or a challenge that the faulty node cannot
answer

2. Correct nodes cannot be accused
– If a node is correct, then there cannot be a correct proof of misbehavior and

it can answer any challenge

Distributed Systems – Roger Wattenhofer – 7/98

More BFT Systems in a Nutshell: FARSITE

• “Federated, Available, and Reliable Storage for an Incompletely Trusted
Environment”

• Distributed file system without servers

• Clients contribute part of their hard disk to FARSITE

• Resistant against attacks: It tolerates f < n/3 Byzantine clients

• Files
– f+1 replicas per file to tolerate f failures

– Encrypted by the user

• Meta-data/Directories
– 3f+1 replicas store meta-data of the files

– File content hash in meta-data allows verification

– How is consistency established? FARSITE uses PBFT!

More efficient
than replicating

the files!

Distributed Systems – Roger Wattenhofer – 7/99

Large-Scale Fault-Tolerant Systems

• The systems discussed so far have one thing in common:
They do not scale!

– More and larger messages have to be exchanged when the size of the
systems increases

• Is it possible to create an efficient fault-tolerant system consisting of 1k,
10k,…, 1M nodes?

• Idea
– Instead of a primary- (or view-)based approach, use a completely

decentralized system

– Each node in the system has the same rights and the same power as its other
“peers”

– This networking paradigm is called peer-to-peer (P2P) computing

• Note that this paradigm/model is completely different
from what we studied on the previous 100+ slides!

Distributed Systems – Roger Wattenhofer –7/100

P2P: Distributed Hash Table (DHT)

• Data objects are distributed among the peers
– Each object is uniquely identified by a key

• Each peer can perform certain operations
– Search(key) (returns the object associated with key)

– Insert(key, object)

– Delete(key)

• Classic implementations of these operations
– Search Tree (balanced, B-Tree)

– Hashing (various forms)

• “Distributed” implementations
– Linear Hashing

– Consistent Hashing

Distributed Systems – Roger Wattenhofer –7/101

Distributed Hashing

hash
.10111010101110011… ≈ .73

0 1.101x

• The hash of a file is its key

• Each peer stores data in a certain range of the ID space [0,1]

• Instead of storing data at the right peer, just store a forward-pointer

Distributed Systems – Roger Wattenhofer –7/102

Linear Hashing

• Problem: More and more objects should be stored � Need to buy new
machines!

• Example: From 4 to 5 machines

0 1

0 1

0 1

Move many objects (about 1/2)

Linear Hashing: Move only a few objects to new machine (about 1/n)

Distributed Systems – Roger Wattenhofer –7/103

Consistent Hashing

• Linear hashing needs central dispatcher

• Idea: Also the machines get hashed! Each machine is responsible for the
files closest to it

• Use multiple hash functions for reliability!

0 1

Distributed Systems – Roger Wattenhofer –7/104

Search & Dynamics

• Problem with both linear and consistent hashing is that all the
participants of the system must know all peers…

– Peers must know which peer they must contact for a certain data item

– This is again not a scalable solution…

• Another problem is dynamics!
– Peers join and leave (or fail)

Distributed Systems – Roger Wattenhofer –7/105

P2P Dictionary = Hashing

hash
10111010101110011…

0000x 0001x
001x

01x

100x 101x
11x

Distributed Systems – Roger Wattenhofer –7/106

10

10

10

10

10

10

P2P Dictionary = Search Tree

0000x 0001x

001x

01x
100x 101x

11x

Distributed Systems – Roger Wattenhofer –7/107

Storing the Search Tree

• Where is the search tree stored?

• In particular, where is the root stored?
– What if the root crashes?! The root clearly reduces scalability & fault

tolerance…

– Solution: There is no root…!

• If a peer wants to store/search, how does it know where to go?
– Again, we don’t want that every peer has to know all others…

– Solution: Every peer only knows a small subset of others

Distributed Systems – Roger Wattenhofer –7/108

10

10

10

10

10

10

1x

01x

000x
001x

The Neighbors of Peers 001x

Distributed Systems – Roger Wattenhofer –7/109

P2P Dictionary: Search

0001x

001x

0000x

01x

1100x
Search hash
value 1011…

1011x

1010x

0x

111x

1101x

Target
machine

Distributed Systems – Roger Wattenhofer –7/110

10

10

10

10

10

10

1x

01x

000x
001x

P2P Dictionary: Search

• Again, 001 searches for 100:

Distributed Systems – Roger Wattenhofer –7/111

10

10

10

10

10

10

0x

11x

101x
100x

P2P Dictionary: Search

• Again, 001 searches for 100:

Distributed Systems – Roger Wattenhofer –7/112

Search Analysis

• We have n peers in the system

• Assume that the “tree” is roughly balanced
– Leaves (peers) on level log2 n constant

• Search requires O(log n) steps
– After kth step, the search is in a subtree on level k

– A “step” is a UDP (or TCP) message

– The latency depends on P2P size (world!)

• How many peers does each peer have to know?
– Each peer only needs to store the address of log2 n constant peers
– Since each peer only has to know a few peers, even if n is large, the system

scales well!

Distributed Systems – Roger Wattenhofer –7/113

Peer Join

• How are new peers inserted into the system?

• Step 1: Bootstrapping

• In order to join a P2P system, a joiner must already know a peer already in
the system

• Typical solutions:
– Ask a central authority for a list of IP addresses that have been in the P2P

regularly; look up a listing on a web site

– Try some of those you met last time

– Just ping randomly (in the LAN)

Distributed Systems – Roger Wattenhofer –7/114

Peer Join

• Step 2: Find your place in the P2P system

• Typical solution:
– Choose a random bit string (which determines the place in the system)

– Search* for the bit string

– Split with the current leave responsible for the bit string

– Search* for your neighbors

* These are standard searches

Peer ID!

Distributed Systems – Roger Wattenhofer –7/115

10

10

10

10

10

10

Random Bit String = 100101…

Example: Bootstrap Peer with 001

Distributed Systems – Roger Wattenhofer –7/116

10

10

10

10

10

10

Random Bit String
= 100101…

New Peer Searches 100101...

Distributed Systems – Roger Wattenhofer –7/117

10

10

10

10

10

10

10

New Peer found leaf with ID 100...

• The leaf and the new peer
split the search space!

Distributed Systems – Roger Wattenhofer –7/118

10

10

10

10

10

10

Find Neighbors

10

Distributed Systems – Roger Wattenhofer –7/119

Peer Join: Discussion

• If tree is balanced, the time to join is
– O(log n) to find the right place

– O(log n)·O(log n) = O(log2 n) to find all neighbors

• It is be widely believed that since all the peers choose their position
randomly, the tree will remain more or less balanced

– However, theory and simulations show that this is not really true!

A regular
search…

Distributed Systems – Roger Wattenhofer –7/120

Peer Leave

• Since a peer might leave spontaneously (there is no leave message), the
leave must be detected first

• Naturally, this is done by the neighbors in the P2P system (all peers
periodically ping neighbors)

• If a peer leave is detected, the peer must be replaced. If peer had a sibling
leaf, the sibling might just do a “reverse split”:

• If a peer does not have a sibling, search recursively!

10

10

10

Distributed Systems – Roger Wattenhofer –7/121

10

10

10

Peer Leave: Recursive Search

• Find a replacement:
1. Go down the sibling tree until you find sibling leaves

2. Make the left sibling the new common node

3. Move the free right sibling to the empty spot

10

10

left right

left

right

Distributed Systems – Roger Wattenhofer –7/122

Fault-Tolerance?

• Typically, only pointers to the data is stored
– If the data holder itself crashes, the data item is not available anymore

• What if the data holder is still in the system, but the peer that stores the
pointer to the data holder crashes?

– The data holder could advertise its data items periodically

– If it cannot reach a certain peer anymore, it must search for the peer that is
now responsible for the data item, i.e., the peer’s ID is closest to the data
item’s key

• Alternative approach: Instead of letting the data holders take care of the
availability of their data, let the system ensure that there is always a
pointer to the data holder!

– Replicate the information at several peers

– Different hashes could be used for this purpose

Distributed Systems – Roger Wattenhofer –7/123

Questions of Experts…

• Question: I know so many other structured peer-to-peer systems (Chord,
Pastry, Tapestry, CAN…); they are completely different from the one you
just showed us!

• Answer: They look different, but in fact the difference comes mostly from
the way they are presented (I give a few examples on the next slides)

Distributed Systems – Roger Wattenhofer –7/124

The Four P2P Evangelists

• If you read your average P2P paper, there are (almost) always four papers
cited which “invented” efficient P2P in 2001:

• These papers are somewhat similar, with the exception of CAN (which is
not really efficient)

• So what are the „Dead Sea scrolls of P2P”?

Chord CAN Pastry Tapestry

Distributed Systems – Roger Wattenhofer –7/125

Intermezzo: “Dead Sea Scrolls of P2P”

„Accessing Nearby Copies of Replicated Objects in a Distributed
Environment“ [Greg Plaxton, Rajmohan Rajaraman, and Andrea Richa,
SPAA 1997]

• Basically, the paper proposes an efficient search routine (similar to the
four famous P2P papers)

– In particular search, insert, delete, storage costs are all logarithmic, the base
of the logarithm is a parameter

• The paper takes latency into account
– In particular it is assumed that nodes are in a metric, and that the graph is of

„bounded growth“ (meaning that node densities do not change abruptly)

Distributed Systems – Roger Wattenhofer –7/126

Intermezzo: Genealogy of P2P

Chord CAN Pastry Tapestry 2001

Napster

1997

2002KademliaP-GridViceroy

SkipGraph SkipNet 2003

Plaxton et al.

Koorde

1998

1999

2000 Gnutella

Kazaa

Gnutella-2

eDonkey

BitTorrent

Skype Steam

WWW, POTS, etc.

PS3

The parents of Plaxton et al.:
Consistent Hashing, Compact Routing, …

Distributed Systems – Roger Wattenhofer –7/127

Chord

• Chord is the most cited P2P system [Ion Stoica, Robert Morris, David
Karger, M. Frans Kaashoek, and Hari Balakrishnan, SIGCOMM 2001]

• Most discussed system in distributed systems and networking books, for
example in Edition 4 of Tanenbaum’s Computer Networks

• There are extensions on top of it, such as CFS, Ivy…

Distributed Systems – Roger Wattenhofer –7/128

Chord

• Every peer has log n many neighbors
– One in distance ≈2-k

for k=1, 2, …, log n

0000x 0001x
001x

01x

100x

101x

11x

Distributed Systems – Roger Wattenhofer –7/129

Skip List

• How can we ensure that the search tree is balanced?
– We don’t want to implement distributed AVL or red-black trees…

• Skip List:
– (Doubly) linked list with sorted items

– An item adds additional pointers on level 1 with probability ½. The items with
additional pointers further add pointers on level 2 with prob. ½ etc.

– There are log2 n levels in expectation

• Search, insert, delete: Start with root, search for the right interval on
highest level, then continue with lower levels

17 34 ∞60 69 78 847 11 32root

root ∞

0

1

2

3

root

root

∞

∞

Distributed Systems – Roger Wattenhofer –7/130

Skip List

• It can easily be shown that search, insert, and delete terminate in O(log n)
expected time, if there are n items in the skip list

• The expected number of pointers is only twice as many as with a regular
linked list, thus the memory overhead is small

• As a plus, the items are always ordered…

Distributed Systems – Roger Wattenhofer –7/131

P2P Architectures

• Use the skip list as a P2P architecture
– Again each peer gets a random value between 0 and 1 and is responsible for

storing that interval

– Instead of a root and a sentinel node (“∞”), the list is short-wired as a ring

• Use the Butterfly or DeBruijn graph as a P2P architecture
– Advantage: The node degree of these graphs is constant � Only a constant

number of neighbors per peer

– A search still only takes O(log n) hops

Distributed Systems – Roger Wattenhofer –7/132

Dynamics Reloaded

• Churn: Permanent joins and leaves
– Why permanent?

– Saroiu et al.: „A Measurement Study of P2P File Sharing Systems“:
Peers join system for one hour on average

– Hundreds of changes per second with millions of peers in the system!

• How can we maintain desirable
properties such as

– connectivity

– small network diameter

– low peer degree?

Distributed Systems – Roger Wattenhofer –7/133

A First Approach

• A fault-tolerant hypercube?

• What if the number of peers is not 2i?
• How can we prevent degeneration?

• Where is the data stored?

• Idea: Simulate the hypercube!

Distributed Systems – Roger Wattenhofer –7/134

Simulated Hypercube

• Simulation: Each node consists of several peers

• Basic components:

• Peer distribution
– Distribute peers evenly

among all hypercube nodes

– A token distribution problem

• Information aggregation
– Estimate the total number of

peers

– Adapt the dimension of
the simulated hypercube

Distributed Systems – Roger Wattenhofer –7/135

Peer Distribution

• Algorithm: Cycle over dimensions
and balance!

• Perfectly balanced after d rounds

• Problem 1: Peers are not fractional!

• Problem 2: Peers may join/leave
during those d rounds!

• “Solution”: Round numbers and
ignore changes during the d rounds

Dimension of
hypercube

Distributed Systems – Roger Wattenhofer –7/136

Information Aggregation

• Goal: Provide the same (good!) estimation of the total number of peers
presently in the system to all nodes

• Algorithm: Count peers in every sub-cube by exchanging messages wih
the corresponding neighbor!

• Correct number after d rounds

• Problem: Peers may join/leave
during those d rounds!

• Solution: Pipe-lined execution

• It can be shown that all nodes get the same estimate

• Moreover, this number represents the correct state d rounds ago!

Distributed Systems – Roger Wattenhofer –7/137

Composing the Components

• The system permanently runs
– the peer distribution algorithm to balance the nodes

– the information aggregation algorithm to estimate the total number of peers
and change the dimension accordingly

• How are the peers connected inside a simulated node, and how are the
edges of the hypercube represented?

• Where is the data of the DHT stored?

Distributed Systems – Roger Wattenhofer –7/138

Distributed Hash Table

• Hash function determines node where data is replicated

• Problem: A peer that has to move to another node must replace store
different data items

• Idea: Divide peers of a node into
core and periphery

– Core peers store data

– Peripheral peers are used for
peer distribution

• Peers inside a node are
completely connected

• Peers are connected to all
core peers of all neighboring
nodes

Distributed Systems – Roger Wattenhofer –7/139

Evaluation

• The system can tolerate O(log n) joins and leaves each round

• The system is never fully repaired, but always fully funtional!

• In particular, even if there are O(log n) joins/leaves per round we always
have

– at least one peer per node

– at most O(log n) peers per node

– a network diameter of O(log n)

– a peer degree of O(log n)

Number of
neighbors/connections

Distributed Systems – Roger Wattenhofer –7/140

Byzantine Failures

• If Byzantine nodes control more and more corrupted nodes and then
crash all of them at the same time (“sleepers”), we stand no chance.

• “Robust Distributed Name Service” [Baruch Awerbuch and Christian
Scheideler, IPTPS 2004]

• Idea: Assume that the Byzantine
peers are the minority. If the
corrupted nodes are the majority in
a specific part of the system, they
can be detected (because of their
unusual high density).

Distributed Systems – Roger Wattenhofer –7/141

Selfish Peers

• Peers may not try to destroy the system, instead they may try to benefit
from the system without contributing anything

• Such selfish behavior is called free riding or freeloading

• Free riding is a common problem in file sharing applications:

• Studies show that most users in the Gnutella network do not provide
anything

– Gnutella is accessed through clients such as BearShare, iMesh…

• Protocols that are supposed to be “incentive-compatible”, such as
BitTorrent, can also be exploited

– The BitThief client downloads without uploading!

• Many techniques have been proposed to limit free riding behavior
– Source coding, shared history, virtual currency…

– These techniques are not covered in this lecture!

Distributed Systems – Roger Wattenhofer –7/142

A Large-Scale System in a Nutshell: Dynamo

• Dynamo is a key-value storage system by Amazon

• Goal: Provide an “always-on” experience
– Availability is more important than consistency

• The system is (nothing but) a DHT

• Trusted environment (no Byzantine processes)

• Ring of nodes
– Node ni is responsible for keys between ni-1 and ni

– Nodes join and leave dynamically

• Each entry replicated across N nodes

• Recovery from error:
– When? On read

– How? Depends on application, e.g. “last write
wins” or “merge”

– One vector clock per entry to manage
different versions of data

Basically what
we talked about

Distributed Systems – Roger Wattenhofer –7/143

Summary

• We have studied a few practical consensus algorithms

• In particular we have seen
– 2PC

– 3PC

– Paxos

– Chubby

– PBFT

– Zyzzyva, PeerReview, FARSITE

• We also talked about techniques to handle large-scale networks
– Consistent hashing

– Skip lists

– Coping with dynamics

– Dynamo

Distributed Systems – Roger Wattenhofer –7/144

Credits

• The Paxos algorithm is due to Lamport, 1998.

• The Chubby system is from Burrows, 2006.

• PBFT is from Castro and Liskov, 1999.

• Zyzyvva is from Kotla, Alvisi, Dahlin, Clement, and Wong, 2007.

• PeerReview is from Haeberlen, Kouznetsov, and Druschel, 2007.

• FARSITE is from Adya et al., 2002.

• Concurrent hashing and random trees have been proposed by Karger,
Lehman, Leighton, Levine, Lewin, and Panigrahy, 1997.

• The churn-resistent P2P System is due to Kuhn et al., 2005.

• Dynamo is from DeCandia et al., 2007.

