
Distributed
Computing Group

HS 2009 Prof. Dr. Roger Wattenhofer, Thomas Locher, Remo Meier, Benjamin Sigg

Distributed Systems
Theory exercise 6

Assigned: December 11, 2009
Discussion: none

1 ALock2

Have a look at the source code below. It is a modified version of the ALock (slides 8/42 ff).

public class ALock2 implements Lock {
int [] f l a g s = {true , true , false , . . . , fa l se } ;
AtomicInteger next = new AtomicInteger (0) ;
ThreadLocal<Integer > mySlot ;

public void l o ck () {
mySlot = next . getAndIncrement () ;
while (! f l a g s [mySlot % n]) {}
f l a g s [mySlot % n] = fa l se ;

}

public void unlock () {
f l a g s [(mySlot+2) % n] = true ;

}
}

a) What was the intention of the author of “ALock2”?

b) Will ALock2 work properly? Why (not)?

c) Give an idea how to repair ALock2.

Hint: don’t bother about performance.

Solution

a) The author wants that two processes can acquire the lock simultaneously.

1

b) The lock is seriously flawed. An example shows how the lock will fail: Assume there
are n processes, all processes try to acquire the lock. The first two processes (p1, p2)
get the lock, the others have to wait. Process p1 keeps the lock a very long time, while
p2 releases the lock almost immediately. Afterwards every second process (p4, p6, ...)
acquires and releases the lock. One half of all process are waiting on the lock (p3, p5,
...), the others continues to work (p4, p6, ...). If the working process now start to acquire
the lock again, then they wait in slots that are already in use.

c) A solution would be to increase the size of the array to 2 ∗ n. With this size there are
simply not enough processes to wrap around too early.

Or we mark any occupied slot. If a process tries to obtain an occupied slot, it just tries
again with the next slot.

Unfortunately one process could still block all the other processes, and FIFO (first in,
first out) is still not guaranteed. In a second step one could make the unlock method
more intelligent: instead of jumping two slots, the next slot is first checked. If there
is a process waiting there, then this process gets the lock. If the process there already
acquired the lock, the next but one slot gets the lock. We can use a lock to protect the
unlock method against race conditions.

// some s imple lock , e . g . a sp in l o c k
Lock somelock = . . .

void unlock (){
somelock . l o ck () ;

i f (f l a g s [(mySlot+1) % n]){
// the next s l o t a l r eady has acqu i red the l o c k
f l a g s [(mySlot+2) % n] = true ;

}
else {

// the next s l o t d id not a l r eady acqu i re the l o c k
f l a g s [(mySlot+1) % n] = true ;

}

somelock . unlock () ;
}

2 MCS Queue Lock

See slides 8/56 ff.

a) A developer suggests to add an abort flag to each node: if a process no longer wants to
wait it sets this abort flag to true. If a process unlocks the lock, it may see the abort
flag of the next node, jump over the aborted node, and check the successor’s successor
node. Modify the basic algorithm to support aborts.

Optional: sketch a proof for your answer.

Hint: Be aware of race-conditions!

2

b) Assuming many processes may abort concurrently, does your answer from a) still work?
Explain why. If it does not work: modify your algorithm to allow concurrent aborts.

Optional: sketch a proof for your answer.

c) Instead of a locked and an aborted flag one could use an integer, and modify the integer
with the CAS operation. What do you think about this idea? How is the algorithm
affected? How is performance affected?

d) The CLH lock (slide 8/49) is basically the same as an MCS lock. Conceptually the only
difference is, that a process spins on the locked field of the predecessor node, not on
its own node. What could be an advantage of CLH over MCS and what could be a
disadvantage?

Solution

a) There is more than one solution, but we can solve this problem without using RMW
registers or other locks. It is important to set and read the flags in the right order:
The unlock method first sets locked, then reads aborted. The abort method on the
other hand first sets aborted, then reads locked. This way if unlock and abort run
in parallel, one of them must already have written its flag before the other can read it.
In the worst case unlock is called twice for some process, but that is not a problem.
Unlocking an already unlocked lock results in no action.

public void unlock (){
i f (. . . mis s ing s u c c e s s o r . . .)

. . . wait for miss ing s u c c e s s o r

qnode . next . locked = fa l se ;
i f (qnode . next . aborted){

i f (. . . qnode . next mis ses s u c c e s s o r . . .){
i f (. . . r e a l l y no s u c c e s s o r . . .)

return ;
}
else {

. . . wait for miss ing s u c c e s s o r . . .
}
qnode . next . next . locked = fa l se ;

}
}

public void abort (){
qnode . aborted = true ;
i f (! qnode . locked){

unlock () ;
}

}

3

b) The solution of a) does not yet work for concurrent aborts. Making the unlock method
recursive will help.

public void unlock (){
unlock (qnode) ;

}
private void unlock (QNode qnode){

// as b e f o r e . . .
i f (. . . mis s ing s u c c e s s o r . . .)

. . . wait for miss ing s u c c e s s o r

qnode . next . locked = fa l se ;
i f (qnode . next . aborted){

// wai t f o r succe s sor o f qnode . next
i f (. . .){ . . . } else { . . . }

unlock (qnode . next) ;
}

}

c) There are four combinations of values the locked and aborted flag can have. We can
easily encode these combinations in an integer. We would not need too worry about
the order in which we read and write to the flags, as we could do this atomically. So
the algorithm would get easier. We could also ensure that unlock is called only once.
Depending on the benchmark this could increase the performance. On the other hand,
a CAS operation is quite expensive and could decrease performance.

d) - There could be problems with caches: spinning on a value that “belongs” to another
process can introduce additional load on the bus, and thus slow down the entire
application.

+ The implementation is much easier: when releasing the lock one has only to set its
own locked flag to false.

+ Also aborting is easier: a blocked process could read the state of its predecessor. If
the predecessor is aborted, then the successor can just remove the node from the
queue, and continue reading values from its predecessor’s predecessor.

3 Linked-Lists

a) Write a proof for: a linked-list using fine-grained locking (as described on slide 8/76 ff)
does not deadlock.

b) Lazy synchronization: can the contains method return a false answer when searching
for x because processes concurrently try to add and remove x? Make a reasonable
assumption how add works.

c) Optimistic synchronization: describe a scenario where a process is forever attempting
to delete a node.

4

d) CAS: think about how to implement the add method. Write the interesting parts as
pseudo-code.

Solution

a) We assign a number p to each node, according to their location in the list. The first
node gets p = 1.0, the second node gets p = 2.0, etc... A new node gets the mean of
its successor and predecessor, e.g. a new node between the first and second node would
get the number p = (1.0 + 2.0)/2 = 1.5.

We observe: the first lock a process acquires never causes problems. If the process
cannot acquire its first lock, then it cannot block any other process.

We further observer: if a process wants to acquire the lock of node na with pa, then the
process has not yet acquired the lock of a node nb width pb > pa.

Assume a process locked na and wants to lock nb, then pa < pb. If another process
locked nb and wants to lock na, then pa > pb. This is a contradiction, hence a deadlock
never occurs.

This argument can be repeated for any number and combination of locks and processes.

b) The add method will lock the future predecessor and successor nodes as well. If add
and remove work with the same item, they will never modify the list at the same time.

As a result it is always clear whether an item is in the list or not, and contains will
never fail.

c) In order to delete a node, the validate method must return true. If we prevent
validate from being true, the process will spin forever. For example we could have
some process(es) which insert nodes between pred and curr. Since validate traverses
the whole list, there is enough time to do the damage.

d) A solution could be to remove marked nodes on the fly when encountered. The pseudo
code below is such an example.

// Node ∗node : ”node” i s a po in t e r to a ”Node”−o b j e c t .

Node∗ po in t e r (Node ∗node){
return node & ˜1 ;

}

boolean marked (Node ∗node){
return (node & 1) == 1 ;

}

boolean add (Item item){
int key = item . hashCode () ;

r e t r y : while (true){

5

// t r a v e r s e to predece s sor

Node ∗pred = head ;
Node ∗ curr = po in t e r (pred−>next) ;

while (curr−>key < key){
Node ∗ succ = curr−>next ;
// I f curr−>next (== succ) conta ins the marked−f l a g ,
// curr i s marked as be ing removed .
// We rep l a c e i t on the f l y
i f (marked (succ)){

// t r y to r ep l a c e pred . next . I f pred i s marked ,
// then t h i s CAS f a i l s .
i f (pred−>next .CAS(curr | FALSE, succ | FALSE)){

curr = succ ;
succ = po in t e r (curr)−>next ;

}
else {

// on f a i l u r e : j u s t s t a r t over
continue : r e t r y ;

}
}
pred = curr ;
curr = succ ;

}

// add item

i f (curr−>key == key){
return fa l se ;

}
else {

Node ∗node = new Node (item) ;
node−>next = curr | FALSE;
// t r y to i n s e r t the new node . I f CAS f a i l s ,
// the loop s t a r t s again .
i f (pred−>next .CAS(curr | FALSE, node | FALSE)){

return true ;
}

}
}

}

6

