
HS 2009 Prof. Dr. Roger Wattenhofer, Thomas Locher, Remo Meier, Benjamin Sigg

Distributed Systems

Exercise 1

Assigned: November 6, 2009
Discussion: November 13, 2009

1 Shared memory vs. message passing

1.1 Comparison

Shared memory allows multiple processes to read and write data from the same location.
Message passing is another way for processes to communicate: each process can send messages
to other processes.

Make a comparison between shared memory and message passing: where are they different
and where are the similar? You might consider different models of message passing, for
example with or without message loss.

Solution

Some ideas are:

Delay There is no delay with shared memory, if one process writes the other processes can
read immediately. With messsage passing delay can happen (not necessarely in every
model), different messages may even have different delays.

Overriding With shared memory if a process writes to a register, another process may
override the value before anyone could read the register. In message passing this cannot
happen. On the other hand messages may be lost, or the inbox buffer of a process may
overflow, leading to similar results.

Consistency With message passing several message may be sent at the same time, and
the order of arriving message may be messed up. With shared memory the value of a
register is always the value that was written last.

1.2 Examples

Consider the actions described below, in which model (shared memory or message passing)
can you best describe them? Why and how?

• Communication via postcard

1



• Speaking in a room with two people

• Instant messages via Skype (data remains on client if partner is offline)

• Speaking in a room full of people

Solution

Postcard Clearly message passing. Messages may be lost, the order may be inconsistent and
the inbox may overlflow.

Two people speaking Shared memory: one can speak (=write), the other can listen (=read).
Both speaking does not work, both listening neither.

Skype This could be modeled with message passing or with shared memory.

Message passing: the text to send is a message, it cannot be lost and their order
is consistent. However, it would be stored on the senders site until the reciever is online.

Shared memory: there could also be an “inbox” register for each participant.
The sender writes into the others inbox register. The reciever clears its register once it
has seen the new text, the sender could then write into the register again.

Many people speaking Message passing: everyone is connected with everyone. If speaking
message are sent not only to the intended listener(s) but also randomly to other people.
If someone speaks loud, more messages are sent. The inbox of any person has limited
size, once it is full arriving messages begin to override older messages. This models the
fact that one cannot listen to many speakers at the same time.

2 Writing to multiple registers at the same time

A n-register allows up to n registers to be written at the same time. Processes may still only
read one value at a time. Let n = 6, give a protocol which solves consensus for 3 processes.
You may assume the registers are initialized with -1 and processes have a unique id.

Hints: You don’t need more than 6 registers (or one 6-register). You don’t need to write into all registers, you can write into a subset

(e.g. you can atomically write into 3 registers). Compare pairs of processes, find out which process is the fastest.

Solution

We require 6 registers. We call the first three registers R0, R1 and R2. To the other three
registers we give the names R0,1, R0,2 and R1,2. The goal is to find the fastest process and
take it’s input value as decision.

In words, the protocol works as folows:

1. In a single step process i writes its id into Ri and into Ri,j for i 6= j.

2. It then checks for all i > j whether process i was faster then process j:

If Ri,j = −1 then neither i nor j have yet done anything.

Otherwise, if Ri = −1 then process j must be faster than i.

Otherwise, if Rj = −1 then process i must be faster than j.

2



Otherwise Ri,j holds the id of the process which was slower.

3. With all this information, a process can calculate which process must be the fastest one.

Solution in pseudocode

Written in pseudocode the protocol looks like this:

i n i t i a l i z e ( ){
// R are the shared r e g i s t e r s
R [ ] = [−1 , −1, −1, −1, −1, −1];

// the input , an array o f l ength 3
input [ ] = [ random ( ) , random ( ) , random ( ) ] ;

}

dec ide ( ){
id = th i s . getThreadId ( ) ;

// the i d e n t i f i e r s o f the other p r o c e s s e s
o ther s = [ {0 ,1 ,2} without { id } ] ;

// atomica l l y wr i t e th r ee r e g i s t e r s
wr i t e ( R[ id ] = id , R[ id , o ther s [ 0 ] ] = id , R[ id , o ther s [ 1 ] ] = id ) ;

// pa i rw i s e comparison o f proces s−speed
f a s t e s t 0 1 = f a s t e r ( 0 , 1 , id ) ;
f a s t e s t 0 2 = f a s t e r ( 0 , 2 , id ) ;
f a s t e s t 1 2 = f a s t e r ( 1 , 2 , id ) ;

// f i nd the p roce s s which i s f a s t e r then a l l the other s
s c o r e [ ] = [ 0 , 0 , 0 ] ;

s c o r e [ f a s t e s 0 1 ] = s co r e [ f a s t e s t 0 1 ]+1;
s c o r e [ f a s t e s 0 2 ] = s co r e [ f a s t e s t 0 2 ]+1;
s c o r e [ f a s t e s 1 2 ] = s co r e [ f a s t e s t 1 2 ]+1;

winner = max( s co r e ) ;

i f ( count [ 0 ] == winner )
d e c i s i o n = input [ 0 ]

e l s e i f ( count [ 1 ] == winner )
d e c i s i o n = input [ 1 ] ;

e l s e // count [ 2 ] == winner
d e c i s i o n = input [ 2 ] ;

}

f a s t e r ( i , j , id ){
r i j = R[ i , j ] ;

3



r i = R[ i ] ;
r j = R[ j ] ;

i f ( r i j == −1 ){
// n e i th e r o f i or j yet s tar ted , I am f a s t e r than both
return id ;

}
e l s e {

i f ( r i == −1 ){
// i did not yet s ta r t , hence j must be f a s t e r
return j ;

}
i f ( r j == −1 ){

// j did not yet s ta r t , hence i must be f a s t e r
return i ;

}
i f ( r i j == i ){

// value wr i t t en by j was over r idden by i
return j ;

}
e l s e { // r j == j

return i ;
}

}

}

3 Analyzing a protocol

A lousy programmer wanted to solve consensus for 2 processes and came up with a sophisti-
cated protocol. Does the protocol really solve consensus? Why?

initialize(){

// s is shared

s = ’?’;

// i is also shared

i = 0;

// the input , an array of length 2

input[] = [random({0,1}), random ({0 ,1})];

}

// making the decision

decide() [...] // see code below

4



Solution

The protocol works and achieves consensus. Let’s have a closer look at the code. The loop
is never executed more than twice and we can easily get rid of it, this also eliminates the
variable decisionMade. All processes will pass a*, b*, and either c1* or c2*.

If we look at a* and input[0] == input[1], then the protocol trivially reaches consensus.
For us only the case where the inputs differ are interesting. Out of symmetry it is enough to
show that the protocol succeeds if input[0] == 0 and input[1] == 1.

When reaching b* either both processes have read the same values or they did not.

• In the case of decision0 == decision1 one process will enter the branch with c1*, the
other the branch with c2*. The one passing through c1* will change its decision, the
other passing through c2* will not hence both processes end with the same decision.

• In the case of decision0 != decision1 both processes have read their input. In
this case both processes pass c2*. The second one will change its decision because
i.fetchAndInc() returns 1, the other one will not, hence both processes end with the
same decision.

• The case where decision0 != decision1 and both processes have value != decision

never happens. We prove this with an execution tree for the code between a* and b*.

T0 : value = s

T0 : s = input0

T0 : value = s

T1 : value = s

T1 : value = s

T0 : value = s

T1 : value = s

T0 : s = input0

T0 : value = s

T1 : s = input1

T1 : value = s

T1 : s = input1

T0 : value = s

T1 : value = s

T1 : value = s

T0 : value = s

input0 = 0
input1 = 1

symmetric

symmetric

value0 = 0
value1 = 0

value0 = 0
value1 = 0

value0 = 0
value1 = 1

value0 = 1
value1 = 1

value0 = 1
value1 = 1

Figure 1: Execution tree for the code between a* and b*.

5



// making the decision

decide (){

// the id of this process , 0 or 1

id = this.getThreadId();

////////

// a*

////////

value = s;

if( value == ’?’ ){

s = input[ id ];

}

value = s;

////////

// b*

////////

if( value != input[ id ] ){

// //////

// c1*

// //////

decision = value;

}

else{

// //////

// c2*

// //////

if( i.fetchAndInc() == 1 ){

decision = input[ 1-id ];

}

else{

decision = input[ id ];

}

}

}

6


