
Specification models and their analysis

Kai Lampka

November 19, 2009

Specification models and their analysis: 1–36

Agenda

1 Graph Theory: Some Definitions

2 Introduction to Petri Nets

3 Introduction to Computation Tree Logic and related model

checking techniques

4 Introduction to Binary Decision Diagrams C

Part I

Binary Decision Diagramms

Agenda

1 Graph Theoretic Foundations

2 Petri Nets

3 Computation Tree Logic and related model checking

techniques

4 Binary Decision Diagrams C
5 Timed Automata and timed CTL

Binary Decision Diagrams: Zusammenfassung

Binäre Entscheidungsdiagramme sind bi-partite, ungewichtete, zyklenfreie

Digraphen, in denen ein jeder inneren Knoten jeweils genau 2 Nachfolger hat,

naemlich den 0-Nachfolger und den 1-Nachfolger.

Die Shannon-Expansion ordnet jedem Binären Entscheidungsdiagramm genau

eine Boolesche Funktion zu. Da sich andersherum jede Boolesche Funktion durch

und genau mit einem BDD darstellen lässt, sind BDDs kanonische Darstellung

von Booleschen Funktionen. Ihre Verbindung zur Schaltalgebra ist somit evident.

In den letzten 2 Dekaden sind BDDs sehr gründlich erforscht worden und es

existieren viele abgeleitete Formen, sowie effiziente Algorithmen zu ihrer

Manipulierung.

Letztendlich bilden BDDs und ihre verwandten Datentypen ein wichtiges

Fundament im Very-large-scale integration (VLSI) Design und im Bereich des

Model checkings.

Da BDDs letztendlich eine Implementierung einer endlichen Booleschen Algebra

darstellen spricht man in diesem Zusammenhang oft auch von symbolischen

Verfahren, bspw. vom symbolischen Model checking.

Specification models and their analysis: Binary Decision Diagramms 5–36

Binary Decision Tree

A Binary Decision Tree (BDT) is a bi-partite tree consisting of a set of

inner nodes (NNT) and a set of terminal nodes (NT) with

N := NNT ∪NT .

3x

3x3x 2
x

2
x

1
x

1
n

2
x

2
n3n

6n 5n 4n

0 0 00 1 100

7n

Nodes are connected via 1- and 0-edges:

−→⊆ NNT ×N and −− →⊆ NNT ×N
We read the tree from top to bottom,

hence we can omitt the arrow heads

Each inner node (circle) is asscoiated

with a node label ni and a variable xj ,

e. g. var(n6) = x3

A dashed line leads to the 0-successor, the solid line to the

1-successor, e. g. child0(n1) = n3; child1(n1) = n2

Each terminal node is associated with a function value from

B := {0, 1}, e. g. value(t1) = 0
Specification models and their analysis: Binary Decision Diagramms 6–36

Binary Decision Tree: Variable Ordering

For algorithmically working with

BDDs it turns out that they

should be ordered w. r. t. the

variables of V .

To do so one simply defines a

total order ≺⊆ V × V and

requires

∀n ∈ NNT : n = child0,1(m) ⇒ var(m) ≺ var(n)

3x3x

2
x

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x3x

0 00 100

7n

1 0

What is the Boolean function represented by the BDT?

What is the space complexity for representing Boolean functions

with BDT?

Specification models and their analysis: Binary Decision Diagramms 7–36

Binary Decision Tree: Semantics

Shannon expansion for Boolean functions:

f (x1, . . . xn) = x1 · f1(x2, . . . , xn) + (1− x1) · f0(x2, . . . , xn)

instead of the Boolean operators (¬,∨,∧) we employ their arithmetic

counterparts, e. g. ¬x1 ≡ (1− x1), etc. .

The recursion tree of a Shannon expansion is exactly what is represented by a

BDT. Let BDT-node k be labelled with variable x1. According to the Shannon

expansion it represents the n-ary Boolean function f (x1, . . . , xn).

Its 1-successor represents than f1(x2, . . . , xn) and its 0-successor represents

function f0(x2, . . . , xn).

Function f1(x1, . . . , 1, xi+1, . . . , xn) is denoted 1-cofactor of function f w. r. t.

variable xi .

Function f0(x1, . . . , 0, xi+1, . . . , xn) is denoted 0-cofactor of function f w. r. t.

variable xi .

For the co-factors we also adapt the notation f |xi :=b with b ∈ {0, 1}
A terminal node represents the 0-ary, constant 0 or 1-function.

Specification models and their analysis: Binary Decision Diagramms 8–36

Binary Decision Tree: Semantics

1
n

2
n3n

1
x

2
x

According to the above discussion each

BDT-node represents a Boolean

function.

Let node n represent function f n and let

node k represent function f k :

−→ Question 1.1: How can we decide if

f n ≡ f k holds?

Specification models and their analysis: Binary Decision Diagramms 9–36

Binary Decision Tree: Isomorphism of nodes

We (recursively) define the equivalence relation ≡ on the set of

BDT-nodes (N = NNT ∪NT) as follows:

for two terminal BDT-nodes t, p ∈ NT :

t ≡ p ⇔ value(t) = value(p)

for two non-terminal BDT-nodes n, k ∈ NNT :

n ≡ k ⇔ child0(n) ≡ child0(k) ∧ child1(n) ≡ child1(k)

equivalent, i. e., p ≡ t iff According to the above discussion each

BDT-node represents a Boolean function.

−→ Question 1.2: How does this effect the size of the obtained graphs?

Specification models and their analysis: Binary Decision Diagramms 10–36

Binary Decision Tree: Isomorphism of nodes

3x3x

2
x

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x3x

0 00 100

7n

1 0

Specification models and their analysis: Binary Decision Diagramms 11–36

Binary Decision Tree: Isomorphism of nodes

3x3x

2
x

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x3x

0 00 100

7n

1 0

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

0 00 100

7n

1 0

Specification models and their analysis: Binary Decision Diagramms 12–36

Binary Decision Tree: Isomorphism of nodes

3x3x

2
x

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x3x

0 00 100

7n

1 0

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

0 00 100

7n

1 0

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

10

7n

1

Specification models and their analysis: Binary Decision Diagramms 13–36

Binary Decision Tree: Isomorphism of nodes

3x3x

2
x

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x3x

0 00 100

7n

1 0

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

0 00 100

7n

1 0

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

10

7n

1

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

10

7n

1

Specification models and their analysis: Binary Decision Diagramms 14–36

Binary Decision Tree: Isomorphism of nodes

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

10

7n

1

Specification models and their analysis: Binary Decision Diagramms 15–36

Binary Decision Tree: Isomorphism of nodes

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

10

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x4n

0

7n

1

Specification models and their analysis: Binary Decision Diagramms 16–36

Binary Decision Tree: Isomorphism of nodes

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

10

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x4n

0

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

4n

Specification models and their analysis: Binary Decision Diagramms 17–36

Binary Decision Tree: Isomorphism of nodes

1
x

1
n

2
n3n

6n 5n 4n

2
x

3x

10

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x4n

0

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

4n

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

Specification models and their analysis: Binary Decision Diagramms 18–36

Binary Decision Tree: Isomorphism of nodes

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

Specification models and their analysis: Binary Decision Diagramms 19–36

Binary Decision Tree: Isomorphism of nodes

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

Specification models and their analysis: Binary Decision Diagramms 20–36

Binary Decision Tree: Isomorphism of nodes

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x

0 1

Specification models and their analysis: Binary Decision Diagramms 21–36

Binary Decision Tree: Isomorphism of nodes

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x

0

7n

1

1
x

1
n

2
n3n

6n 5n

2
x

3x

0 1

The reduction is applied on the fly,

i. e., each allocated node is unique.

Hence application of an a posteriori

reduction not necessary.

As we will see later, uniqueness of nodes is

not only a key to memory efficiency but also

to run-time efficiency w. r. t. the

manipulation of BDDs.

Specification models and their analysis: Binary Decision Diagramms 22–36

BDD: Multi-rooted BDDs

Uniqueness of BDD nodes allows one to share sub-graphs among

different BDDs yielding multi-rooted BDDs:

1
x

2
x

3x

4f1f 2f 3f

10

−→ Question 1.3: Can we do more, e. g. apply Shannon for function f3?

Specification models and their analysis: Binary Decision Diagramms 23–36

Binary Decision Diagram: Don’t care nodes
A node n ∈ NNT is denoted don’t-care

(dnc) node iff

child0(n) = child1(n) holds

As shown by the example the Shannon-

expansion yields, that such nodes can

safely be ommited once one allocates

BDDs.

Specification models and their analysis: Binary Decision Diagramms 24–36

Binary Decision Diagram: Don’t care nodes
A node n ∈ NNT is denoted don’t-care

(dnc) node iff

child0(n) = child1(n) holds

As shown by the example the Shannon-

expansion yields, that such nodes can

safely be ommited once one allocates

BDDs.

1
x

1
n

2
n3n

6n 5n

2
x

3x

0 1

Specification models and their analysis: Binary Decision Diagramms 25–36

Binary Decision Diagram: Don’t care nodes
A node n ∈ NNT is denoted don’t-care

(dnc) node iff

child0(n) = child1(n) holds

As shown by the example the Shannon-

expansion yields, that such nodes can

safely be ommited once one allocates

BDDs.

1
x

1
n

2
n3n

6n 5n

2
x

3x

0 1

1
x

1
n

3n

6n 5n

2
x

3x

0 1

2
n

Specification models and their analysis: Binary Decision Diagramms 26–36

Binary Decision Diagram: Don’t care nodes
A node n ∈ NNT is denoted don’t-care

(dnc) node iff

child0(n) = child1(n) holds

As shown by the example the Shannon-

expansion yields, that such nodes can

safely be ommited once one allocates

BDDs.

1
x

1
n

2
n3n

6n 5n

2
x

3x

0 1

1
x

1
n

3n

6n 5n

2
x

3x

0 1

2
n

1
x

1
n

5n 3x

0 1

3n

6n

Specification models and their analysis: Binary Decision Diagramms 27–36

Binary Decision Diagram: Don’t care nodes
A node n ∈ NNT is denoted don’t-care

(dnc) node iff

child0(n) = child1(n) holds

As shown by the example the Shannon-

expansion yields, that such nodes can

safely be ommited once one allocates

BDDs.

1
x

1
n

2
n3n

6n 5n

2
x

3x

0 1

1
x

1
n

3n

6n 5n

2
x

3x

0 1

2
n

1
x

1
n

5n 3x

0 1

3n

6n

1
x

1
n

5n 3x

0 1

Specification models and their analysis: Binary Decision Diagramms 28–36

Binary Decision Diagrams: Formal Definition

A reduced ordered Binary Decision Diagram B < V , ≺> is a 5-tuple

{N , value, var, child1, child0} where

1 V is a finite and non-empty set of boolean variables with the fixed

ordering relation ≺⊆ V × V defined one.

2 N = NT ∪NNT is a finite non-empty set of nodes, consisting of the

set of terminal nodes NT and non-terminal nodes NNT , with

NT ∩NNT = ∅.
3 The following functions are defined:

1 the value-returning function value : NT 7→ B for each terminal node,

2 the variable-returning function var : NNT 7→ V for each

non-terminal node,

3 the child node-returning functions child0, child1 : NNT 7→ N for

each non-terminal node, and

4 the root node-returning function getRoot : B 7→ N .

Specification models and their analysis: Binary Decision Diagramms 29–36

Binary Decision Diagrams: Formal Definition

1 For the BDD to be ordered the following constraint must hold:

∀u ∈ NNT :

child1(u) ∈ NNT : var(child1(u)) � var(u)

child0(u) ∈ NNT : var(child0(u)) � var(u).

2 A BDD is denoted reduced iff the following conditions apply:

(a) Isomorphism rule: No isomorphic nodes; i.e.

(i) Non-terminal case:∀n, m ∈ NNT :

n 6= m⇒ (var(n) 6= var(m)∨
child1(n) 6= child1(m) ∨ child0(n) 6= child0(m))

(ii) Terminal case:∀n, m ∈ NT : n 6= m⇒ (value(n) 6= value(m))

(b) Dnc-rule: No don’t care nodes: 6 ∃u ∈ NNT : child0(u) = child1(u).

Specification models and their analysis: Binary Decision Diagramms 30–36

Binary Decision Diagrams: Canonicity

Reduced ordered BDDs are (strongly) canonical representations for

Boolean Functions, thus each Boolean function f produces its own

BDD Bf .

f 6≡ g ⇔ Bf 6≡ Bg

−→ Question 1.4: Why can equivalenz testing be done in constant time?

Consider the following two Boolean functions:

f := ¬dab + ¬ad¬c + abd + ¬a¬c¬d

g := ¬a¬cb + cba + ¬b¬a¬c + a¬bc

−→ Question 1.5: Are f and g equivalent? Please justify by making use of BDDs

−→ Excursion 1.1: Proof of canonicity (on the black board)

Specification models and their analysis: Binary Decision Diagramms 31–36

BDD: Algorithmic manipulation

For making use of BDDs in an algebraic framework it is neccessary

to being capable of efficiently applying operators to them, s.t. the

obtained BDD represents the resp. function. Hence any n-ary

operator applicable to n Boolean functions should be applicable to

their n BDD-based representations.

In the following we consider 1-ary and 2-ary (binary) operators, s.t.

¬f Negate(Bf)

f + g Plus(Bf , Bg)

f · g Mult(Bf , Bg)

Specification models and their analysis: Binary Decision Diagramms 32–36

BDD-based algorithms: Negation

Negate(node n)
(0) IF n ∈ NT THEN

RETURN(makeTerminal(1− value(n)))

(1) ELSE

(2) node t := Negate(child1(n))

(3) node e := Negate(child0(n))

(4) IF t = e THEN RETURN(t)

(5) ELSE RETURN(makeNode(var(n), t, e))

END

1
x

1
n

5n 3x

0 1

−→ Question 1.6: Construct the

recursion tree for Negate and the BDD

depicted above

Specification models and their analysis: Binary Decision Diagramms 33–36

BDD-based algorithms: Apply

A binary operator op ∈ {+,×, . . .} can be applied to BDDs by means of Bryant’s

Apply algorithm.

APPLY(op, node n, node m)

(0) node e, t, res

Reached terminal nodes, end of recursion

(1) IF n,m ∈ NT THEN

(2) int v := value(n) op value(m)

(3) RETURN(makeTerminal(v))

Check op cache if result is already known

(4) res := cacheLookup(op, n,m)

(5) IF res 6= ε THEN RETURN(res)

−→ Example 1.1:

Consider f1 := ¬x1x2 and f2 := ¬x1x3. Please give the BDDs

for f1 and f2, construct the recursion tree for f1 ∧ f2 and give the

resulting BDD.

Depending on the node-labelling variables

branch into recursion

(6) IF var(n) = var(m) THEN

(7) v := var(n)

(8) e := APPLY(op, child0(n), child0(m))

(9) t := APPLY(op, child1(n), child1(m))

(10) ELSE IF var(n) ≺ var(m) THEN

(11) v := var(n)

(12) e := APPLY(op, child0(n),m)

(13) t := APPLY(op, child1(n),m)

(14) ELSE

(15) v := var(m);

(16) e := APPLY(op, n, child0(m))

(17) t := APPLY(op, n, child1(m))

Allocate new node, unique and non-dnc-node

(18) IF t = e THEN RETURN(t)

(19) ELSE

(20) res := RETURN(makeNode(v, t, e))

Insert result into op cache and terminate recursion

(19) cacheInsert(op, n,m, res)

(20) RETURN(res)

Specification models and their analysis: Binary Decision Diagramms 34–36

BDD: Algorithmic manipulation

Besides the APPLY-algorithm, which is the most important one other

algorithms have been developped. Let f be a n-ary Boolean function and

let Bf be its BDD, in the following we will employ the following operation

and their resp. BDD-based implementations:

f (x1, . . . , xn)|xi =b RESTRICT(Bf , b) with b ∈ B
Quantification:

1 Existential quantification:

∃xi : f (~x)⇔ f |xi =1 × f |xi =0 ABSTRACT(B, xi , Mult)

2 Universal quantification:

∀xi : f (~x)⇔ f |xi =0 + f |xi =1 ABSTRACT(B, xi , Plus)

Relabeling: [x 7→ y]f Bf {y ← x}, each occurence of variable x is

replaced by variable y : (f |x=1 × (g(y) = y)) + (f |x=1 × (g(y) = y))

−→ Example 1.2: BDDs

Specification models and their analysis: Binary Decision Diagramms 35–36

BDD-based approaches for the Verification of systems

In total the so far discussed techniques gives us a framework for

efficiently representing and manipulating Boolean functions. This is the

basis for representing and verifying systems such as

Symbolic analysis of switching functions

Symbolic rechability set generation, especially in case of Petri nets

Symbolic CTL model checking

Specification models and their analysis: Binary Decision Diagramms 36–36

