Specification models and their analysis

Kai Lampka

November 19, 2009
THE
Institut für Technische Informatik und Kommunikationsnetze

Agenda

(0) Graph Theory: Some Definitions
© Introduction to Petri Nets

- Introduction to Computation Tree Logic and related model checking techniques
- Introduction to Binary Decision Diagrams \triangleleft

Part I

Binary Decision Diagramms

Agenda

- Graph Theoretic Foundations
(0) Petri Nets
- Computation Tree Logic and related model checking techniques
- Binary Decision Diagrams \triangleleft
- Timed Automata and timed CTL

Binary Decision Diagrams: Zusammenfassung

- Binäre Entscheidungsdiagramme sind bi-partite, ungewichtete, zyklenfreie Digraphen, in denen ein jeder inneren Knoten jeweils genau 2 Nachfolger hat, naemlich den 0-Nachfolger und den 1-Nachfolger.
- Die Shannon-Expansion ordnet jedem Binären Entscheidungsdiagramm genau eine Boolesche Funktion zu. Da sich andersherum jede Boolesche Funktion durch und genau mit einem BDD darstellen lässt, sind BDDs kanonische Darstellung von Booleschen Funktionen. Ihre Verbindung zur Schaltalgebra ist somit evident.
- In den letzten 2 Dekaden sind BDDs sehr gründlich erforscht worden und es existieren viele abgeleitete Formen, sowie effiziente Algorithmen zu ihrer Manipulierung.
- Letztendlich bilden BDDs und ihre verwandten Datentypen ein wichtiges Fundament im Very-large-scale integration (VLSI) Design und im Bereich des Model checkings.
- Da BDDs letztendlich eine Implementierung einer endlichen Booleschen Algebra darstellen spricht man in diesem Zusammenhang oft auch von symbolischen Verfahren, bspw. vom symbolischen Model checking.

Binary Decision Tree

A Binary Decision Tree (BDT) is a bi-partite tree consisting of a set of inner nodes $\left(\mathcal{N}_{N T}\right)$ and a set of terminal nodes $\left(\mathcal{N}_{T}\right)$ with $\mathcal{N}:=\mathcal{N}_{N T} \cup \mathcal{N}_{T}$.

- Nodes are connected via 1- and 0-edges: $\longrightarrow \subseteq \mathcal{N}_{N T} \times \mathcal{N}$ and $--\longrightarrow \subseteq \mathcal{N}_{N T} \times \mathcal{N}$
- We read the tree from top to bottom, hence we can omitt the arrow heads
- Each inner node (circle) is asscoiated with a node label n_{i} and a variable x_{j}, e.g. $\operatorname{var}\left(n_{6}\right)=x_{3}$
- A dashed line leads to the 0 -successor, the solid line to the 1 -successor, e. g. $\operatorname{child}_{0}\left(n_{1}\right)=n_{3} ; \operatorname{child}_{1}\left(n_{1}\right)=n_{2}$
- Each terminal node is associated with a function value from

$$
\mathbb{B}:=\{0,1\}, \text { e.g. value }\left(t_{1}\right)=0
$$

- For algorithmically working with BDDs it turns out that they should be ordered w.r.t. the variables of \mathcal{V}.
- To do so one simply defines a total order $\prec \subseteq \mathcal{V} \times \mathcal{V}$ and
 requires

$$
\forall n \in \mathcal{N}_{N T}: n=\operatorname{child}_{0,1}(m) \Rightarrow \operatorname{var}(m) \prec \operatorname{var}(n)
$$

- What is the Boolean function represented by the BDT?
- What is the space complexity for representing Boolean functions with BDT?
- Shannon expansion for Boolean functions:

$$
f\left(x_{1}, \ldots x_{n}\right)=x_{1} \cdot f_{1}\left(x_{2}, \ldots, x_{n}\right)+\left(1-x_{1}\right) \cdot f_{0}\left(x_{2}, \ldots, x_{n}\right)
$$

instead of the Boolean operators (\neg, \vee, \wedge) we employ their arithmetic counterparts, e. g. $\neg x_{1} \equiv\left(1-x_{1}\right)$, etc. .

- The recursion tree of a Shannon expansion is exactly what is represented by a BDT. Let BDT-node k be labelled with variable x_{1}. According to the Shannon expansion it represents the n-ary Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$.
- Its 1 -successor represents than $f_{1}\left(x_{2}, \ldots, x_{n}\right)$ and its 0 -successor represents function $f_{0}\left(x_{2}, \ldots, x_{n}\right)$.
- Function $f_{1}\left(x_{1}, \ldots, 1, x_{i+1}, \ldots, x_{n}\right)$ is denoted 1-cofactor of function f w.r.t. variable x_{i}.
- Function $f_{0}\left(x_{1}, \ldots, 0, x_{i+1}, \ldots, x_{n}\right)$ is denoted 0 -cofactor of function f w.r.t. variable x_{i}.
- For the co-factors we also adapt the notation $\left.f\right|_{x_{i}:=b}$ with $b \in\{0,1\}$
- A terminal node represents the 0 -ary, constant 0 or 1 -function.

Binary Decision Tree:

Semantics

We (recursively) define the equivalence relation \equiv on the set of BDT-nodes $\left(\mathcal{N}=\mathcal{N}_{N T} \cup \mathcal{N}_{T}\right)$ as follows:

- for two terminal BDT-nodes $t, p \in \mathcal{N}_{T}$:

$$
t \equiv p \Leftrightarrow \operatorname{value}(t)=\operatorname{value}(p)
$$

- for two non-terminal BDT-nodes $n, k \in \mathcal{N}_{N T}$:

$$
n \equiv k \Leftrightarrow \operatorname{child}_{0}(n) \equiv \operatorname{child}_{0}(k) \wedge \operatorname{child}_{1}(n) \equiv \operatorname{child}_{1}(k)
$$

equivalent, i. e., $p \equiv t$ iff According to the above discussion each BDT-node represents a Boolean function.
\longrightarrow Question 1.2: How does this effect the size of the obtained graphs?

Binary Decision Tree:

Binary Decision Tree:

Binary Decision Tree:

Binary Decision Tree:

Isomorphism of nodes

Binary Decision Tree:

Isomorphism of nodes

Binary Decision Tree:

Binary Decision Tree:

Isomorphism of nodes

Binary Decision Tree:

Isomorphism of nodes

Binary Decision Tree:

Isomorphism of nodes

Binary Decision Tree:

Binary Decision Tree:

Binary Decision Tree:

- The reduction is applied on the fly, i. e., each allocated node is unique.
- Hence application of an a posteriori reduction not necessary.
- As we will see later, uniqueness of nodes is not only a key to memory efficiency but also to run-time efficiency w.r.t. the manipulation of BDDs.

Uniqueness of BDD nodes allows one to share sub-graphs among different BDDs yielding multi-rooted BDDs:

\longrightarrow Question 1.3: Can we do more, e. g. apply Shannon for function f_{3} ?

Binary Decision Diagram:

A node $n \in \mathcal{N}_{N T}$ is denoted don't-care (dnc) node iff

$$
\operatorname{child}_{0}(n)=\operatorname{child}_{1}(n) \text { holds }
$$

As shown by the example the Shannonexpansion yields, that such nodes can safely be ommited once one allocates BDDs.

Binary Decision Diagram:

A node $n \in \mathcal{N}_{N T}$ is denoted don't-care (dnc) node iff

$$
\operatorname{child}_{0}(n)=\operatorname{child}_{1}(n) \text { holds }
$$

As shown by the example the Shannonexpansion yields, that such nodes can safely be ommited once one allocates BDDs.

X_{3}

Binary Decision Diagram:

A node $n \in \mathcal{N}_{N T}$ is denoted don't-care (dnc) node iff

$$
\operatorname{child}_{0}(n)=\operatorname{child}_{1}(n) \text { holds }
$$

As shown by the example the Shannonexpansion yields, that such nodes can safely be ommited once one allocates BDDs.

Binary Decision Diagram:

A node $n \in \mathcal{N}_{N T}$ is denoted don't-care (dnc) node iff

$$
\operatorname{child}_{0}(n)=\operatorname{child}_{1}(n) \text { holds }
$$

As shown by the example the Shannonexpansion yields, that such nodes can safely be ommited once one allocates BDDs.

X_{3}

Binary Decision Diagram:

A node $n \in \mathcal{N}_{N T}$ is denoted don't-care (dnc) node iff

$$
\operatorname{child}_{0}(n)=\operatorname{child}_{1}(n) \text { holds }
$$

As shown by the example the Shannonexpansion yields, that such nodes can safely be ommited once one allocates BDDs.

X_{3}

Binary Decision Diagrams:

A reduced ordered Binary Decision Diagram $\mathrm{B}<\mathcal{V}, \prec>$ is a 5-tuple $\left\{\mathcal{N}\right.$, value, var, child ${ }_{1}$, child $\left._{0}\right\}$ where
(1) \mathcal{V} is a finite and non-empty set of boolean variables with the fixed ordering relation $\prec \subseteq \mathcal{V} \times \mathcal{V}$ defined one.
(2) $\mathcal{N}=\mathcal{N}_{T} \cup \mathcal{N}_{N T}$ is a finite non-empty set of nodes, consisting of the set of terminal nodes \mathcal{N}_{T} and non-terminal nodes $\mathcal{N}_{N T}$, with
$\mathcal{N}_{T} \cap \mathcal{N}_{N T}=\emptyset$.
(0) The following functions are defined:
(1) the value-returning function value : $\mathcal{N}_{T} \mapsto \mathbb{B}$ for each terminal node,
(2) the variable-returning function $\operatorname{var}: \mathcal{N}_{N T} \mapsto \mathcal{V}$ for each non-terminal node,
(3) the child node-returning functions child ${ }_{0}, \operatorname{child}_{1}: \mathcal{N}_{N T} \mapsto \mathcal{N}$ for each non-terminal node, and
(c) the root node-returning function getRoot : $\mathrm{B} \mapsto \mathcal{N}$.
(1) For the BDD to be ordered the following constraint must hold:

$$
\begin{aligned}
& \forall u \in \mathcal{N}_{N T}: \\
& \quad \operatorname{child}(u) \in \mathcal{N}_{N T}: \operatorname{var}\left(\operatorname{child}_{1}(u)\right) \succ \operatorname{var}(u) \\
& \quad \operatorname{child}_{0}(u) \in \mathcal{N}_{N T}: \operatorname{var}\left(\operatorname{child}_{0}(u)\right) \succ \operatorname{var}(u) .
\end{aligned}
$$

(2) A BDD is denoted reduced iff the following conditions apply:
(a) Isomorphism rule: No isomorphic nodes; i.e.
(i) Non-terminal case: $\forall n, m \in \mathcal{N}_{N T}$:

$$
\begin{aligned}
& n \neq m \Rightarrow(\operatorname{var}(n) \neq \operatorname{var}(m) \vee \\
& \left.\quad \operatorname{child}_{1}(n) \neq \operatorname{child}_{1}(m) \vee \operatorname{child}_{0}(n) \neq \operatorname{child}_{0}(m)\right)
\end{aligned}
$$

(ii) Terminal case: $\forall n, m \in \mathcal{N}_{T}: n \neq m \Rightarrow(\operatorname{value}(n) \neq \operatorname{value}(m))$
(b) Dnc-rule: No don't care nodes: $\nexists u \in \mathcal{N}_{N T}: \operatorname{child}_{0}(u)=\operatorname{child}_{1}(u)$.

Binary Decision Diagrams:

- Reduced ordered BDDs are (strongly) canonical representations for Boolean Functions, thus each Boolean function f produces its own BDD B_{f}.

$$
f \not \equiv g \Leftrightarrow B_{f} \not \equiv B_{g}
$$

\longrightarrow Question 1.4: Why can equivalenz testing be done in constant time?

- Consider the following two Boolean functions:

$$
\begin{aligned}
& f:=\neg d a b+\neg a d \neg c+a b d+\neg a \neg c \neg d \\
& g:=\neg a \neg c b+c b a+\neg b \neg a \neg c+a \neg b c
\end{aligned}
$$

\longrightarrow Question 1.5: Are f and g equivalent? Please justify by making use of BDDs
\longrightarrow Excursion 1.1: Proof of canonicity (on the black board)

Algorithmic manipulation

- For making use of BDDs in an algebraic framework it is neccessary to being capable of efficiently applying operators to them, s.t. the obtained BDD represents the resp. function. Hence any n-ary operator applicable to n Boolean functions should be applicable to their n BDD-based representations.
- In the following we consider 1-ary and 2-ary (binary) operators, s.t.

$$
\begin{array}{lll}
\neg f & \rightsquigarrow & \operatorname{Negate}\left(B_{f}\right) \\
f+g & \rightsquigarrow & \operatorname{Plus}\left(B_{f}, B_{g}\right) \\
f \cdot g & \rightsquigarrow & \operatorname{Mult}\left(B_{f}, B_{g}\right)
\end{array}
$$

BDD-based algorithms:

Negate(node n)
(0) IF $n \in \mathcal{N}_{T}$ THEN
$\operatorname{RETURN}($ makeTerminal $(1-\operatorname{value}(n)))$
(1) ELSE
(2) node $t:=\operatorname{Negate}\left(\operatorname{child}_{1}(n)\right)$
(3) node e:=Negate(childo(n))
(4) IF $t=e$ THEN RETURN(t)
(5) ELSE RETURN(makeNode $(\operatorname{var}(n), t, e))$

END
\longrightarrow Question 1.6: Construct the recursion tree for Negate and the BDD depicted above

BDD-based algorithms:

A binary operator op $\in\{+, \times, \ldots\}$ can be applied to BDDs by means of Bryant's Apply algorithm.
$\operatorname{APPLY}(\mathrm{op}$, node n, node m)
(0) node e, t, res

Reached terminal nodes, end of recursion
(1) IF $n, m \in \mathcal{N}_{T} \quad$ THEN
(2) \quad int $v:=$ value (n) op value (m)
(3) RETURN(makeTerminal (v))

Check op cache if result is already known
(4) \quad res $:=$ cacheLookup(op, n, m)
(5) IF res $\neq \epsilon$ THEN RETURN(res)

Example 1.1:

Consider $f_{1}:=\neg x_{1} x_{2}$ and $f_{2}:=\neg x_{1} x_{3}$. Please give the BDDs
for f_{1} and f_{2}, construct the recursion tree for $f_{1} \wedge f_{2}$ and give the resulting $B D D$.

Depending on the node-labelling variables

	branch into recursion
(6)	IF $\operatorname{var}(n)=\operatorname{var}(m)$ THEN
(7)	$v:=\operatorname{var}(n)$
(8)	$e:=\operatorname{APPLY}\left(\mathrm{op}, \operatorname{child}_{0}(n), \operatorname{child}_{0}(m)\right)$
(9)	$t:=\operatorname{APPLY}\left(\mathrm{op}, \operatorname{child}_{1}(n), \operatorname{child}_{1}(m)\right)$
(10)	ELSE IF $\operatorname{var}(n) \prec \operatorname{var}(m)$ THEN
(11)	$v:=\operatorname{var}(n)$
(12)	$e:=\operatorname{APPLY}\left(\mathrm{op}, \operatorname{child}_{0}(n), m\right)$
(13)	$t:=\operatorname{APPLY}\left(\mathrm{op}, \operatorname{child}_{1}(n), m\right)$
(14)	ELSE
(15)	$v:=\operatorname{var}(\mathrm{m})$;
(16)	$e:=\operatorname{APPLY}\left(\mathrm{op}, n\right.$, child $\left._{0}(m)\right)$
(17)	$t:=\operatorname{APPLY}\left(\mathrm{op}, n, \operatorname{child}_{1}(m)\right)$

Allocate new node, unique and non-dnc-node
(18) IF $t=e \quad$ THEN RETURN (t)
(19) ELSE
(20) res $:=\operatorname{RETURN}($ makeNode $(v, t, e))$
$\frac{\text { Insert result into op cache and terminate recursion }}{(19) \quad \text { cacheInsert (op, } n, m, \text { res) }}$
(20) RETURN(res)

Algorithmic manipulation

Besides the APPLY-algorithm, which is the most important one other algorithms have been developped. Let f be a n-ary Boolean function and let B^{f} be its BDD, in the following we will employ the following operation and their resp. BDD-based implementations:

- $\left.f\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=b} \rightsquigarrow \operatorname{RESTRICT}\left(\mathrm{~B}^{f}, b\right)$ with $b \in \mathbb{B}$
- Quantification:
(1) Existential quantification:

$$
\exists x_{i}:\left.f(\vec{x}) \Leftrightarrow f\right|_{x_{i}=1} \times\left. f\right|_{x_{i}=0} \rightsquigarrow \operatorname{ABSTRACT}\left(\mathrm{~B}, x_{i}, \text { Mult }\right)
$$

(2) Universal quantification:

$$
\forall x_{i}:\left.f(\vec{x}) \Leftrightarrow f\right|_{x_{i}=0}+\left.f\right|_{x_{i}=1} \rightsquigarrow \operatorname{ABSTRACT}\left(\mathrm{~B}, x_{i}, \text { Plus }\right)
$$

- Relabeling: $[x \mapsto y] f \rightsquigarrow \mathrm{~B}^{f}\{y \leftarrow x\}$, each occurence of variable x is replaced by variable $y:\left(\left.f\right|_{x=1} \times(g(y)=y)\right)+\left(\left.f\right|_{x=1} \times(g(y)=y)\right)$

BDD-based approaches for the Verification of systems

In total the so far discussed techniques gives us a framework for efficiently representing and manipulating Boolean functions. This is the basis for representing and verifying systems such as

- Symbolic analysis of switching functions
- Symbolic rechability set generation, especially in case of Petri nets
- Symbolic CTL model checking

