
Specification models and their analysis

Kai Lampka

November 18, 2009

Specification models and their analysis: 1–23

Agenda

1 Graph Theory: Some Definitions

2 Introduction to Petri Nets

3 Introduction to Computation Tree Logic and related model

checking techniques C
4 Introduction to Binary Decision Diagrams

Part I

Introduction to Computation Tree Logic

Introduction to CTL Model Checking: Preliminaries

In (formal) logic one studies how to combine propositional formulae

consisting of atomic propositions, manipulate the formulae, and

ultimately draw correct conclusions, i. e., decide if a (complex)

formula (= combination of statements) is correct or not.

This requires a decidable theory and a set of ”mechanical” methods

for showing that a complex formula is true or not.

Question: What does this mean in the context of systems engineering?

−→ Example 1.1: Introduction to propositional logic

Specification models and their analysis: Introduction to Computation Tree Logic 4–23

Introduction to CTL: Kripke structure

We extend the notion of Labelled Transition Systems as follows:

Definition 1.1: Kripke structure

A Kripke structure K is a six-tuple K := (S, S0,Act,E,AP,L), where

1 S := {~s1, . . . ,~sn} is an ordered (indexed) set of states with

2 S0 is the set of initial states.

3 Act is the discrete set of transition labels,

4 E ⊆ S×Act × S is an ordered (indexed) set of labelled state-to-state

transitions.

5 AP is a set of atomic propositions, e. g. {green, blue, yellow , black} and

6 L : S 7→ 2AP as state labelling function.

−→ Example 1.2: “Weather” Kripke structure

Specification models and their analysis: Introduction to Computation Tree Logic 5–23

Introduction to CTL Model checking

Analogously to propositional logic one wants to reveal if a formal

statement about a system’s behavior is correct or not.

Whereas in propositional logics this is easy, –one simply needs to

evaluate a formulae w. r. t. an assignment µ–, the reasoning about

Kripke structures is much more demanding.

However, at first we need to clarify how a Kripke structure defines a

system behavior.

Specification models and their analysis: Introduction to Computation Tree Logic 6–23

Introduction to CTL: Paths

a

c

e f

s

s

s

ss

c

b

{red}

{yellow}

{blue;

white}

{green}

{blue}
0

1

2

3 4

System is given as Kripke structure, hence future

behavior is defined by sequences states.

for any pair of states within such a sequence, denoted

as path, the resp. states within the Kripke structure

are connected by an edge:

π~s0
:= ~s0,~s1,~s2,~s4,~s0,~s1 (finite path fragment)

in fact we are intrested in the sequence of atomic

propositions attached to each state (L(~si)), but for

simplicity we stick to the state identifiers ~si

Specification models and their analysis: Introduction to Computation Tree Logic 7–23

Introduction to CTL: Branching time view

As we see from this:

temporal logics which are the logics on transition systems are time

abstract, i. e., they allow to reason about ordering of states. They do

not allow to reason about state residence times!

The modelling and reasoning about real-time systems is denoted

timed verification.

Hence one reasons over system behaviors which are defined by paths

in the Kripke structure.

This allows one to make statements over a single path (= linear

time view), or over sets of paths (= branching time view).

CTL follows the branching time view, hence it allows to make

statements about set of paths, like ∃ a path s.t. , ∀ paths it holds: ...

Specification models and their analysis: Introduction to Computation Tree Logic 8–23

Introduction to CTL Model Checking: Branching time view

To reason about the properties of a system (model) in a branching

time view one must expand all possible behaviors, starting from

some dedicated state.

For simplicity we are considering in the following only Kripke

structures

with a single initial state (~s0), s.t. we only need to worry about paths

starting in state ~s0.

which are non-terminal (= non-deadlocks),

−→ Question 1.1: What do we get if we unroll all paths of a Kripke structure,

transition by transition starting at the initial state

Specification models and their analysis: Introduction to Computation Tree Logic 9–23

Introduction to CTL Model Checking: Constructing a CT

The computation tree (CT) of a Kripke structure

K := (S,S0,Act,E,AP,L) can be constructed as follows:

each node of the CT carries a state label contained in S;

the root of the CT is labelled with the state label ~s0;

each child of a CT-node c is labelled with a state-label ~s and it is a

successor of ~s resp. state in K.

The set of children nodes of a CT-node c can than be defined as

follows:

child(c) :=
⋃

∀l∈Act:(~s,l,~t)∈E

~t

Since each node of the CT carries a state label ~s, it can be

annotated with the set of atomic propositions which are actually

fulfilled by the resp. state ~s, i. e., with L(~s).

Specification models and their analysis: Introduction to Computation Tree Logic 10–23

CTL Model Checking: Defining CTL

CTL has the following ingredients:

1 atomic propositions, where a state ~s satisfies a atomic proposition

a ∈ AP if it carries the respective label (L(~s) = a)

2 standard logic operators ∧,¬ and their derivatives, e. g. →, which

allow to construct more complex state formulae;

−→ Example 1.3: a→ ¬(c ∨ b)

3 quantifiers ∃ and ∀ applied to path formulae, i. e., sequences of state

properties to be fulfilled w. r. t. some starting state ~s0.

−→ Example 1.4: ∃Ψ, ∀Ψ

4 temporal operators © (= next) and U (= until) which we apply to

state formulae and which gives us path formulae;

−→ Example 1.5: Ψ := © b Ψ′ := a U b

Specification models and their analysis: Introduction to Computation Tree Logic 11–23

CTL Model Checking: Defining CTL

Definition 1.2: Computation Tree Logic

CTL formula consists of sub-formulae which are either path

formulae (Ψ) or state formulae (φ). With a ∈ AP as set of atomic

propositions we give the following definitions:

A CTL state formula φ is defined as

φ := true | a ∈ AP |φ′ ∧ φ′′ | ¬φ′ | ∃Ψ | ∀Ψ

with φ, φ′, φ′′ as CTL state formulae and Ψ as CTL path formula.

A CTL path formula Ψ is defined as

Ψ := ©φ | φUφ′

where the φ’s are CTL state formulae.

Specification models and their analysis: Introduction to Computation Tree Logic 12–23

CTL Model Checking: Syntax

Consider the following CTL formulae with {coin,wash} =: AP
∃© coin

∀(true U wash)

∃(coin ∧ ∀©wash)

∃© (coin ∧ ∀©wash)

1 Which of the above formulae are syntactically correct?

2 How does a non-trivial fulfilling CT look like?

Specification models and their analysis: Introduction to Computation Tree Logic 13–23

CTL Model Checking: Semantics

As for propositional logics we define a satisfaction relation |= for

CTL-formulae:

Definition 1.3: Semantics of CTL

1 For a Kripke structure K and a state ~s we define the following:

~s |= a⇔ a ∈ L(~s)

~s |= ¬φ⇔ ~s 6|= φ

~s |= φ ∧ φ′ ⇔ ~s |= φ ∧~s |= φ′

~s |= ∃Ψ⇔ π~s |= Ψ for some path π~s in K
~s |= ∀Ψ⇔ π~s |= Ψ for all paths π~s in K

2 For a path π~s in K we define:

π~s |= ©φ⇔ π~s [1] |= φ

π~s |= φUφ′

⇔ ∃j ≥ 0 : π~s [j] |= φ′ ∧ ∀(k : 0 ≤ k < j) : π~s [k] |= φ,

where π~s [x] refers to the x ’th state of path π~s .

Specification models and their analysis: Introduction to Computation Tree Logic 14–23

The model checking procedure: Normal form

However complex CTL-formulae might also contain non-standard

operators, e. g. a→ ¬(c ∨ b).

For reducing the number of cases to be covered

(true, a ∈ AP,∧,¬,∀© ,∃© ,∀U ,∃U), as well as for simplifying

their treatment each CTL-formula is converted into a normal form

In the following we will make use of the so called existential normal

form (ENF) which solely employs the operators ¬,∧,∃© ,∃U and

∃� where � is the always operator.

Definition 1.4: The always operator (�)

potentially always: ∃�φ := ¬∀(true U¬φ)

there is (at least one) path π s.t. φ holds in each state of π.

invariantly: ∀�φ := ¬∃(true U¬φ)

for all paths Π and hence all states φ holds

−→ Example 1.6: Example for the �-operator
Specification models and their analysis: Introduction to Computation Tree Logic 15–23

The model checking procedure: Normal form

Definition 1.5: Existential normal form

A CTL-formula is in existential normal form (ENF) if it is of the following

type:
φ := true | a ∈ AP | φ ∧ φ | ¬φ | ∃©φ | ∃(φUφ) | ∃�φ

For converting a CTL formula in ENF one needs to replace the universal

by the existential quantifier. This is possible by exploiting the following

dualities:

∀©φ = ¬∃©¬φ
∀(φ′ Uφ′′) = ¬∃ [¬φ′′ U (¬φ′ ∧ ¬φ′′)] ∧ ¬∃�¬φ′′

Thus for deciding if a system L complies with a property a resp. model

checking algorithm must only cover the above 7 ENF-base cases.

Specification models and their analysis: Introduction to Computation Tree Logic 16–23

CTL Model Checking: Semantics

For actually model checking a LTS L we need to extend the above

defined satisfaction relation to transition systems (we also do not

want to expand the CT explicitly).

Let Ω be a CTL-formula and let L be a finite non-terminal LTS

L |= Ω⇔ ~s0 |= Ω

This gives the outline of the CTL model checking procedure:

1 Construct Satisfy(Ω) which is the set of states for which a given

CTL-formula Ω holds and which we therefore define as follows:

Satisfy(Ω) := {~s ∈ S | ~s |= Ω}

2 Check if the initial state of L is contained in this set, since

L |= Ω⇔ ~s0 ∈ Satisfy(Ω)

How to compute the set Satisfy is of major concern now.
Specification models and their analysis: Introduction to Computation Tree Logic 17–23

The model checking procedure: Overview

Preliminary: take CTL-formula and convert it into ENF and provide state

labellings for LTS w. r. t. the atomic propositions of the CTL formula.

1 generate a parse tree for the CTL formula s.t. the leaves of the parse

tree carry atomic propositions or the constant true

2 construct Satisfy(Ω) by processing the parse tree bottom-up,

i. e., one computes the satisfaction sets of the leave nodes then for

their parent nodes and so on and on ...

3 check if the initial state is contained in the satisfaction set

Satisfy(Ω)

Specification models and their analysis: Introduction to Computation Tree Logic 18–23

The model checking procedure: Parse Tree

Definition 1.6: Parse Tree

Given a CTL-formula Ω we construct a parse tree s.t.

a leaf of the parse tree carries an atomic proposition or the constant

true as occurring in a sub-formulae of the CTL-formula to be parsed

the inner nodes carry combined operators as employed for connecting

different state formulae, i. e., op ∈ {¬,∧,∨,∀© ,∃© ,∀U ,∃U }.

−→ Example 1.7: Parse tree for ∃© a ∧ ∃(b U [¬∀(true U¬c)]

Specification models and their analysis: Introduction to Computation Tree Logic 19–23

Model checking procedure: Base cases

(I) What do we need to do for the leaves of the parse tree,

i. e., . how do we compute Satisfy(φ) for φ := true |a ∈ AP?

1 φ = true

this set contains all states, since all states are satisfying the constant

true formula, i. e., we have

Satisfy(φ) := Satisfy(true) := S

2 φ ∈ AP
we collect all states labelled with φ, i. e.,

Satisfy(φ) := {~s ∈ S | L(~s) = φ}

Specification models and their analysis: Introduction to Computation Tree Logic 20–23

Model checking procedure: Base cases

(II) What do we need to do for the inner nodes of the parse tree?

1 Simple case covering the computation of Satisfy(φ) for

φ := ¬ϕ |ϕ′ ∧ ϕ′′ |∃©ϕ

φ = ¬ϕ: Satisfy(φ) is the complement of Satisfy(ϕ) w. r. t. S

Satisfy(φ) := S \ Satisfy(ϕ)

φ = ϕ′ ∧ ϕ′′: Satisfy(φ) is the intersection of the satisfaction sets of

ϕ′ and ϕ′′:

Satisfy(φ) := Satisfy(ϕ′) ∩ Satisfy(ϕ′′)

φ = ∃©ϕ: Satisfy(φ) are all those states which predecessors satisfy

ϕ, i. e.,

Satisfy(φ) := {~s ∈ S | Post(~s) ∩ Satisfy(ϕ) 6= ∅}
−→ Example 1.8: Satisfy(∃©ϕ)

Specification models and their analysis: Introduction to Computation Tree Logic 21–23

Model checking procedure: Base cases

(II) Handling of inner nodes of the parse tree (continued).

2 Complex case requires fixed point computation for obtaining

Satisfy(φ) in case

φ := ϕ′ Uϕ′′ |∃�ϕ

φ = ∃(ϕ′ Uϕ′′):

Satisfy 0(φ) := Satisfy(ϕ′′)

Satisfy i+1(φ) := Satisfy i (φ) ∪
{~s ∈ Satisfy(ϕ′) | Post(~s) ∩ Satisfy i (φ) 6= ∅}

φ = ∃�ϕ:

Satisfy 0(φ) := Satisfy(ϕ)

Satisfy i+1(φ) := {~s ∈ Satisfy(ϕ) | Post(~s) ∩ Satisfy i (φ) 6= ∅}
−→ Example 1.9: Model Checking of “weather” LTS

Specification models and their analysis: Introduction to Computation Tree Logic 22–23

Concluding Remarks: Witnesses and Counter examples

1 Witnesses and counter examples:

path demonstrating L |=φ is denoted witnesses

path demonstrating L 6|= φ is denoted counter example.

2 A last operator (eventually):

Definition 1.7: The eventually operator (♦)

potentially: ∃♦φ := ∃(true Uφ)

at least one path π goes at least through one state where φ holds.

inevitable: ∀♦φ := ∀(true Uφ)

all paths go at least through one state there φ holds.

Specification models and their analysis: Introduction to Computation Tree Logic 23–23

