@ Graph Theory: Some Definitions

@ Introduction to Petri Nets

Kai Lampka

@ Introduction to Computation Tree Logic and related model

checking techniques <1
November 18, 2009

@ Introduction to Binary Decision Diagrams

| [[(O ————

Specification models and their nalyis: 123
Preliminaries
@ In (formal) logic one studies how to combine propositional formulae
Part | consisting of atomic propositions, manipulate the formulae, and

ultimately draw correct conclusions, i.e., decide if a (complex)
Intro ion to Computation Tree Logic formula (= combination of statements) is correct or not.
© This requires a decidable theory and a set of "mechanical” methods

for showing that a complex formula is true or not.
Question: What does this mean in the context of systems engineering?

+ Example 1.1: Introduction to propositional logic

 models and thei analysis: Introduction to Computa

Introduction to CTL: Kripke structure Introduction to CTL Model checking

We extend the notion of Labelled Transition Systems as follows:

Definition 1.1: Kripke structure

A Kripke structure K is a six-tuple K := (S, So, Act, E, AP, L), where @ Analogously to propositional logic one wants to reveal if a formal

@ S:={5,...,5} is an ordered (indexed) set of states with statement about a system's behavior is correct or not.
@ So is the set of initial states. @ Whereas in propositional logics this is easy, —one simply needs to
© Act is the discrete set of transition labels, evaluate a formulae w.r. t. an assignment i, the reasoning about

@ E CSxAct x § is an ordered (indexed) set of labelled state-to-state Kripke structures is much more demanding

transitions. o However, at first we need to clarify how a Kripke structure defines a

@ AP is a set of atomic propositions, . g. {green, blue, yellow, black} and system behavior

@ £:5+ 2AP as state labelling function

— Example 1.2: “Weather” Kripke structure

Specification models and their analsis: Introduction to Computation Tree Logic 5-23 Specification models and thelr analysis: Introduction to Computation Tree Logic 6-23

Introduction to CTL: Paths Introduction to CTL: Branching time view

As we see from this:

- . @ temporal logics which are the logics on transition systems are time
o System is given as Kripke structure, hence future P 8 & Y

- . abstract, i.e., they allow to reason about ordering of states. They do
behavior is defined by sequences states.

not allow to reason about state residence times!
o for any pair of states within such a sequence, denoted

The modelling and reasoning about real-time systems is denoted
as path, the resp. states within the Kripke structure 8 s 4

timed verification.
are connected by an edge:
@ Hence one reasons over system behaviors which are defined by paths

50,51, %, 54, S, 51 (finite path fragment) in the Kripke structure.

@ This allows one to make statements over a single path (= linear

o in fact we are intrested in the sequence of atomic
propositions attached to each state (£(s;)), but for
simplicity we stick to the state identifiers 5 @ CTL follows the branching time view, hence it allows to make

statements about set of paths, like 3 a path s.t. , ¥ paths it holds:

time view), or over sets of paths (= branching time view).

(gzesn)

Specification models and th

on to Computation Tree Logic 7-23 Specifcation models and their analysis: Introduction to Computation Tree Logic 8-23

Introduction to CTL Model Checking: Branching time view — Introduction to CTL Model Checking: Constructing a CT

The computation tree (CT) of a Kripke structure
K = (S,So, Act,E, AP, L) can be constructed as follows:

@ each node of the CT carries a state label contained in S;

o To reason about the properties of a system (model) in a branching

time view one must expand all possible behaviors, starting from

some dedicated state. @ the root of the CT is labelled with the state label 5;;
@ For simplicity we are considering in the following only Kripke o each child of a CT-node c is labelled with a state-label 5 and it is a
structures successor of § resp. state in K.
o with a single initial state (), s.t. we only need to worry about paths @ The set of children nodes of a CT-node c can than be defined as

starting in state 5 follows:

o which are non-terminal (= non-deadlocks), cnild(c) i U :

—— Question 1.1: What do we get if we unroll all paths of a Kripke structure, VIEAct:(3,1,E)€E

transition by transition starting at the initial state @ Since each node of the CT carries a state label 5, it can be
annotated with the set of atomic propositions which are actually

fulfilled by the resp. state §, i.e., with £(5)

Specification models and their analsis: Introduction to Computation Tree Logic 9-23 Specification models and their analysi: Introduction to Computation Tree Logic 10-23

CTL Model Checking: Defining CTL CTL Model Checking: Defining CTL

CTL has the following ingredients: . . .
Definition 1.2: Computation Tree Logic

@ atomic propositions, where a state § satisfies a atomic proposition

a € AP if it carries the respective label (£(5) = a) o CTL formula consists of sub-formulae which are either path
formulae (W) or state formulae (¢)). With a € AP as set of atomic
propositions we give the following definitions:

@ standard logic operators A, — and their derivatives, e.g. —, which
allow to construct more complex state formulae;

L Example 13 2= ~(c v b) o A CTL state formula ¢ is defined as

@ quantifiers 3 and VV applied to path formulae, i.e., sequences of state &= true|a € AP| ¢ A ¢ | =g |3V | VW
properties to be fulfilled w.r.t. some starting state &,

— Example 1.4: 3V, YW

with ¢, ¢/, ¢ as CTL state formulae and W as CTL path formula.
o A CTL path formula W is defined as
@ temporal operators () (= next) and U (= until) which we apply to

. . = o) 4
state formulae and which gives us path formulae; Vi=0¢|oUg
» Example 15: W:= Ob V' :=aUb where the ¢'s are CTL state formulae.

CTL Model Checking: Syntax

Consider the following CTL formulae with {coin, wash} =: AP
o 30 coin
o V(true U wash)
o 3(coin A Y O wash)
o 3O (coin AV O wash)

© Which of the above formulae are syntactically correct?

@ How does a non-trivial fulfilling CT look like?

Specifcation models and their analysis: Introduction to Computation Tree Logic 13-23

CTL Model Checking: Semantics

As for propositional logics we define a satisfaction relation = for
CTL-formulae:

Definition 1.3: Semantics of CTL

@ For a Kripke structure K and a state 5 we define the following:
e SEasacL(s)
eFE-peFKe
e SEONY ©SEPASE G
o 5= 3V & 75 = W for some path 7z in K
o §EYW & s = W for all paths s in K
@ For a path 7z in K we define:
oms = Odeml] = ¢
o mEoUg
3 20:ml] = ¢ AV(k:0< k< j):mslk] = 6
where 75[x] refers to the x'th state of path mrs.

Specification models and their analysi: Introduction to Computation Tree Logic 14-23

The model checking procedure:

o However complex CTL-formulae might also contain non-standard
operators, e.g. a — —(c V b).

o For reducing the number of cases to be covered
(true,a € AP,A,~,¥Y (.30 ,VU,3U), as well as for simplifying
their treatment each CTL-formula is converted into a normal form

@ In the following we will make use of the so called existential normal
form (ENF) which solely employs the operators =, A,3(),3U and
30 where O is the always operator.

Definition 1.4: The always operator ([J)

Normal form

The model checking procedure:

@ potentially always: 30¢ := —V(true U —¢)
there is (at least one) path 7 s.t. ¢ holds in each state of .
o invariantly: VOg := —3(true U —¢)
for all paths M and hence all states ¢ holds

— Example 1.6: Example for the C-operator
Speciction modelsand their analyss: Introduction o Con

tation Tree Logie 1523

Normal form

Definition 1.5: Existential normal form

A CTL-formula is in existential normal form (ENF) if it is of the following

type:
¢:=true|ac AP |6 A S| -6|300|PU¢) | 300

For converting a CTL formula in ENF one needs to replace the universal
by the existential quantifier. This is possible by exploiting the following
dualities:

e VO¢=-30-¢

@ V(¢'Ug") = -3[~¢" U (=¢' A =¢")] A ~30~¢"
Thus for deciding if a system £ complies with a property a resp. model
checking algorithm must only cover the above 7 ENF-base cases.

Speciicaion models a oduction to Computation Tree

CTL Model Checking: Semantics The model checking procedure: Overview

@ For actually model checking a LTS £ we need to extend the above
defined satisfaction relation to transition systems (we also do not
want to expand the CT explicitly). Preliminary: take CTL-formula and convert it into ENF and provide state

o Let Q be a CTL-formula and let £ be a finite non-terminal LTS labelli

for LTS w.r.t. the atomic propositions of the CTL formula

B Q@ generate a parse tree for the CTL formula s.t. the leaves of the parse
LEQe5EQ

tree carry atomic propositions or the constant true
@ This gives the outline of the CTL model checking procedure: @ construct Satisfy(£) by processing the parse tree bottom-up,
@ Construct Satisfy(Q2) which is the set of states for which a given

i.e., one computes the satisfaction sets of the leave nodes then for
CTL-formula Q holds and which we therefore define as follows:

their parent nodes and so on and on
Satisfy(Q) ;= {§ €S |5E=Q} @ check if the initial state is contained in the satisfaction set
@ Check if the initial state of L is contained in this set, since Satisfy (€2)
LEQ® 5 ¢ Satisfy(Q)

o How to compute the set Satisfy is of major concern now.

Specifcation models and their analysis: Introduction to Computation Tree Logic 17-23

Specification models and their analysi: Introduction to Computation Tree Logic 18-23

The model checking procedure: Parse Tree = Model checking procedure: Base cases

(1) What do we need to do for the leaves of the parse tree,

N i.e., . how do we compute Satisfy(¢) for ¢ := true|a € AP?
Definition 1.6: Parse Tree P () for ¢ ‘
Given a CTL-formula © we construct a parse tree s.t. Q ¢ = true
@ a leaf of the parse tree carries an atomic proposition or the constant this set contains all states, since all states are satisfying the constant
true as occurring in a sub-formulae of the CTL-formula to be parsed true formula, i.e., we have

o the inner nodes carry combined operators as employed for connecting

Satisfy(¢) := Satisfy(true) :
different state formulae, i.e., op € {-,A,V,Y(,30.VU,3U}

Q o€ AP
we collect all states labelled with ¢, i.e.,

— Example 1.7: Parse tree for 30 a A 3(bU [-¥(true U—c)]

Satisfy(¢

Specifcation models and their analysis: Introduction to Computation Tree Logic 19-23 Speciicaion models a

oduction to Computation Tree

Model checking procedure: Base cases Model checking procedure: Base cases

(1) What do we need to do for the inner nodes of the parse tree? (1) Handling of inner nodes of the parse tree (continued)
@ Simple case covering the computation of Satisfy(¢) for @ Complex case requires fixed point computation for obtaining
¢:=-0lp' A" [30¢ Satisfy(¢) in case

= ' Uy |30y

. Satisfy(¢) is the complement of Satisfy(p) w.r.t. §

o U
Satisfy(¢) == S\ Satisfy(y) 0 ¢=3(¢"Uy"):

Satisfyo(¢) = Satisfy(y"

p = ' A" Satisfy(¢) is the intersection of the satisfaction sets of atisfyo(9) atisfy (")

Satisfy;.1(¢) = Satisfy;(¢) U
{8 € Satisfy(y') | Post(8) N Satisfy,(¢) # 0}

¢ and "

Satisfy(¢) = Satisfy(¢') N Satisfy(")

. . . o ¢=30p:
° p: Satisfy(¢) are all those states which predecessors satisfy
Satisfyo(¢) := Satisfy(y)
Satisfy; . (¢) = {5 € Satisfy(p) | Post(5) N Satisfy,(¢) # 0}

Satisfy(¢) := {5 € S | Post(5) N Satisfy(y) # 0}

+ Example 1.8: Satisfy(30) — Example 1.9: Model Checking of “weather” LTS

Specifcation models and their analysis: Introduction to Computation Tree Logic 2123 Specification models and their analysi: Introduction to Computation Tree Logic 2223

Concluding Remarks: Witnesses and Counter examples

© Witnesses and counter examples:

e path demonstrating £ [= ¢ is denoted witnesses
@ path demonstrating £ b~ ¢ is denoted counter example.

@ A last operator (eventually):

Defi

ition 1.7: The eventually operator (0)

o potentially: 30¢ := I(true U p)
at least one path 7 goes at least through one state where ¢ holds.
o inevitable: Y0 ¢ := V(true U ¢)
all paths go at least through one state there ¢ holds.

Specifcation models and their analysis: Introduction to Computation Tree Logic 23-23

