
The dining philosophers Dijkstra’65 (en.wikipedia.org/wiki/Dining philosophers problem)

There are N philosophers sitting around a circular table either thinking or

eating pasta. Each philosopher needs his left and right fork to eat, but there is

only one fork between each 2 philosophers. Design an algorithm that the

philosophers can follow.

4

5

1

2

3

Consider the following protocol (= sequence of interaction)

void philosopher()

while(1) {
think();

get left fork();

get right fork();

eat();

put left fork();

put right fork();

}

Problem?
Specification models and their analysis: 1–44

Motivation (1)

In the following we will develop a concise (mathematical) framework for

formally describing systems of interest (→ formal model).

This framework allows one to formally, i. e., mathematically reason

about a model’s and hence a system’s correctness w. r. t. dedicated

properties, e. g. deadlock-freeness etc.

In principle we could start with any programming language. However,

their interpretation is very complicated (address arithmetic, arbitrary data

types, ...). Also only certain aspects of a system matter, where one may

abstract away many details. Hence it appears useful to follow a more

abstract view and speak here only about very simple “languages” for

describing systems. Such methods are commonly denoted as high-level

model description methods.

Specification models and their analysis: 2–44

Motivation (2)

Even though the high-level model description methods appear very

simple, they possess a clearly defined (execution) semantics. This

semantics allows us to map them to graphs.

These graphs represent all possible behaviors of the specified

high-level description.

Hence the basic objects which represent the entities to be studied

are graphs. Therefore we will briefly re-visit some basic definitions,

which you probably have already seen before.

Don’t mind the formal notation, this will be made clear by examples

and allows you to understand the resp. literature.

Specification models and their analysis: 3–44

Agenda

1 Graph Theory: Some Definitions

2 Introduction to Petri Nets

3 Introduction to Computation Tree Logic and related model

checking techniques

4 Introduction to Binary Decision Diagrams

Part I

Graph Theory: Some Definitions

Preliminaries – Foundations of Graphs (at a glance)

1
v

2
v

3
v

4
v

5
v

Definition 1.1: Graph

A graph G is a pair (V, E) where

1 V is a discrete set of vertices (or nodes)

{v1, . . . , vm}
2 E ⊆ V× V is a discrete set of pairs

{(vi , vj) | for some i , j ∈ {1, . . . , m}}. One

commonly denotes these pairs as edges or arcs.

Specification models and their analysis: Graph Theory: Some Definitions 6–44

Preliminaries – Foundations of Graphs (at a glance)

1
v

2
v

3
v

4
v

5
v

Definition 1.2: Directed Graph (Digraph)

If the elements of E are ordered in such a way

that (v ,w) 6≡ (w , v) the elements of E are

denoted as directed edges or directed arcs.

A graph with such a property is denoted

directed graph or digraph for short.

Specification models and their analysis: Graph Theory: Some Definitions 7–44

Preliminaries – Foundations of Graphs (at a glance)

1 In a digraph and for an ordered pair (u, v) ∈ E vertex u is denoted

as predecessor or parent of vertex v and vertex v is denoted as

successor or child of vertex u.

2 This can be extended to the level of sets of children and parent

nodes as follows:

Post(u) := {v ∈ V | (u, v) ∈ E}
is the set of all children or direct successors of a vertex u.

Pre(v) := {u ∈ V | (u, v) ∈ E}
is the set of all parents or direct predecessors of a vertex v .

3 The above sets are very helpful, once we want to operate (traverse)

on graphs.

Specification models and their analysis: Graph Theory: Some Definitions 8–44

Preliminaries – Foundations of Graphs (at a glance)

4
v

2

3

5

1

v

v

v

v

1

5

0.5
23

2
−0.5

W(v3, v5) =

W(v3, v1) =

Definition 1.3: Weighted Graphs

If the edges of a graph are labelled with

elements from R one speaks of a weighted

graph.

In fact the set of edges of a weighted digraph

is a ternary relation (set of triples):

E ⊆ V×R× V.

Function W : V× V→ R gives one the

weight associated with the respective edge

(u, x , v): (u, x , v) ∈ E⇒W(u, v) = x and

W(u, v) := 0 for all triples not contained in E.

Specification models and their analysis: Graph Theory: Some Definitions 9–44

Preliminaries – Incidence/transition matrices

1 Incidence matrix: Each finite graph G consisting of n vertices can

be mapped to a matrix T ∈ {0, 1}n×n as follows:

aij :=

{
1 ⇔ (vi , vj) ∈ E
0 else

Such a matrix is denoted as incidence matrix. Note, that this

requires a consistent numbering of the vertices.

2 In case ∃aij 6∈ {0, 1} one speaks of a weighted incidence or

transition matrix A of G.

Note: Sometimes the incidence/transition matrix is defined as the trans-

posed AT .

−→ Example 1.1: A of the weighted graph shown before

Specification models and their analysis: Graph Theory: Some Definitions 10–44

Preliminaries – Foundations of Graphs (at a glance)

4
v

2

3

5

1

v

v

v

v

e
b

a

f

d
c

Definition 1.4: Labelled Graphs

If the edges of a graph are labelled with elements

from a finite set, e. g. l ∈ Act one speaks

commonly of a labelled graph.

In fact the set of edges of a labelled digraph is

once again a ternary relation: E ⊆ V×Act × V.

Note:

A labelled graph is also often refered to as labelled transition system (LTS),

where instead of vertices one speaks of states.

Specification models and their analysis: Graph Theory: Some Definitions 11–44

Preliminaries – Labelled Transition System

Definition 1.5: Labelled Transition System (LTS)

A LTS is a quadruple T := (S, S0,Act, E), where

1 S := {~s1, . . . ,~sn} is an ordered (indexed) set of states with

2 S0 as the set of initial states.

3 Act is the discrete set of transition labels,

4 E ⊆ S×Act × S is an ordered (indexed) set of labelled state-to-state

transitions.

Specification models and their analysis: Graph Theory: Some Definitions 12–44

Preliminaries – Labelled Transition system

a

b

d

e f

s

2
s

s

ss

3

1

54

c

1 S := {

2 S0 :=

3 Act := {

4 E := {

Specification models and their analysis: Graph Theory: Some Definitions 13–44

Preliminaries – Termination and Determinism of LTS

Note:

LTS are essentially the semantics of the here discussed high-level mod-

elling techniques, where the techniques of model checking allow us to rea-

son about their properties. In the following we briefly strive some important

definitions.

A LTS T is defined non-terminal if each state has at least one

out-going edge otherwise T is called terminal.

A LTS T is defined deterministic if each state has at most one

out-going edge with the same edge label otherwise T is denoted as

non-deterministic.

Are non-deterministic finite LTS more expressive than deterministic ones?

Specification models and their analysis: Graph Theory: Some Definitions 14–44

Preliminaries – Termination and Determinism (Examples)

a

c

e f

s

2
s

s

ss

3

1

54

c

non-terminal,deterministic?

a

e

s

2
s

s

ss

3

1

54

e

b

d

non-terminal,deterministic?

a

c

e

s

2
s

s

ss

3

1

54

e

b

d

non-terminal,deterministic?

Specification models and their analysis: Graph Theory: Some Definitions 15–44

Agenda

1 Graph Theory: Some Definitions

2 Introduction to Petri Nets C
3 Introduction to Computation Tree Logic and related model

checking techniques

4 Introduction to Binary Decision Diagrams

Part II

Petri Nets

Petri Nets – Introduction

A Petri Net (PN) is a weighted(?), bipartite(?) digraph(?) invented by Carl

Adam Petri in his PhD-thesis “Kommunikation mit Automaten” (1962).

Many flavors of Petri nets are in use, where we start with the simplest kind

(almost).
Example:

insertCoin

lock_door

wait

finished

idle

wash

Circles P := {wait,wash, . . .} (set of places)

Boxes T := {insertCoin, lock door, . . .} (set of transitions)

Arcs C := {. . . , (lock door,wash), . . .} (set of edges)

Weights W := here constant 1 for each arc

Initial marking M0 := { m0(wait) := 0,

m0(wash) := 0,m0(idle) := 1}.

Specification models and their analysis: Petri Nets 18–44

Definition 2.1: (Weigthed) Petri Net

A Petri net (PN) P is a 5-tuple (P, T , C ,W,M0), where

1 P := {p1, . . . , pm} is a finite, ordered (indexed) set of places and

2 T := {t1, . . . , tn} is a finite, ordered (indexed) set of transitions,

3 C ⊆ (P × T) ∪ (T × P), is a connection or flow relation,

4 W : C 7→ N0 assigns a weight to each element of C and

5 m0 : p ∈ P 7→ N0 gives the initial marking for place p, i. e., it assigns a

number of token to place p. The set of all such initial markings is denoted

M0 (= the initial marking of P).

1 An ordering defined on the places yields that the place markings m0(pi) can be

understood as the component of a vector ~s0[i] s.t. we can map the initial

marking M0 to the dedicated vector ~s0.

2 A vector of this kind is denoted in the following as state vector or simply as state.

Specification models and their analysis: Petri Nets 19–44

Petri Nets – Introduction

insertCoin

lock_door

wait

finished

idle

wash

the

initial state of the PN

~s0 = (m0(wait),m0(wash),

m0(idle))

= (0, 0, 1)

insertCoin

lock_door

wait

finished

idle

wash

another state of the PN

~s = (1, 1, 1)

insertCoin

lock_door

wait

finished

idle

wash

and another state

~s = (1, 1, 0)

Note:

For differing among the different states of a PN we index them accordingly,

i. e., we write ~sk when referring to the k ′th state.

Specification models and their analysis: Petri Nets 20–44

Petri Nets – Operational Semantics (Pre - and Post sets)

Definition 2.2: Pre - and Post sets

1 Pre-set of a transition t ∈ T : •t := {p|(p, t) ∈ C}
2 Post-set of a transition t ∈ T : t• = {p|(t,p) ∈ C}

analogously we define pre (•p) and post sets (p•) for each place p ∈ P.

t
43

5

2

1

1

p
2

p
6

p
1

•t43 := {

t43• := {

Specification models and their analysis: Petri Nets 21–44

Petri Nets – Operational Semantics (Enabling)

The operational (or execution) semantics of PN stem from the movement

of tokens in the net:

Transition consume tokens from input places (pre set) and

transition add tokens to their output places (post set),

where we execute the transitions one by another (=interleaving

semantics).

But when can we actually execute transitions ?

Specification models and their analysis: Petri Nets 22–44

Petri Nets – Operational Semantics (Enabling)

Enabled transition:

a transition t ∈ T is enabled in a state ~s, denoted ~s B t, iff the

places of its pre-set hold sufficiently many tokens

~s B t ⇔ (∀p ∈ •t : ~s [p] ≥ W(p, t))

Enabling state:

a state ~s is denoted enabling for a transition t iff ~s B t holds.

Once a transition is enabled in a state ~s it can be executed (=fired):

When we execute an enabled transition we destroy suffi-

ciently many tokens on the input places and generate the

required number of tokens on the output places of t.

Specification models and their analysis: Petri Nets 23–44

Petri Nets – Operational Semantics (Firing)

Given a state ~s of a PN we want to compute its successor state ~s ′ w. r. t.

an enabled transition. To do so we define a transfer or transition function

of a transition t as follows:

δ(~s, t) := ~s ′ with~s ′ [p] :=



~s [p] ⇔ p 6∈ t • ∪ • t

~s [p]−W(p, t) ⇔ p ∈ •t ∩ t•
~s [p] +W(t, p) ⇔ p ∈ t • ∩ •t
~s [p]−W(p, t) +W(t, p) ⇔ p ∈ t • ∩ • t

if ~s B t then ~s ′ := δ(~s, t),

This gives a set of triples (~s, t,~s ′) where we also use the notation

~s
t→ ~s ′.

Specification models and their analysis: Petri Nets 24–44

Petri Nets – Reachability set

Token game: Moving the tokens around the net by executing

enabled transitions.

Sequential execution of transition functions of enabled transitions

allows one to construct a set of reachable states, denoted as

reachability set of a PN P w. r. t. its initial state ~s0.

Definition 2.3: Reachability set

1 S0 := {~s0}
2 Si := Si−1 ∪ {δ(~s, t) | ∀~s ∈ Si−1,∀t ∈ T where~s B t}
3 we are intrested in the largest of such sets S0 ⊆ S1 ⊆ . . . ⊆ S which

we denote as set of reachable states S of a PN P and w. r. t. ~s0.

Note:

This allows one to construct a (not necessarily finite) LTS for each PN and an

initial state ~s0. Such an LTS constitutes the semantic model of a PN.
Specification models and their analysis: Petri Nets 25–44

Petri Nets – Reachability graph

Definition 2.4: Reachability graph

A reachability graph RG (P,~s0) of a PN P and its initial state ~s0 is a LTS

L(S,S0,Act,E) with

S which is the set of reachable states of the PN.

S0 := {~s0} with ~s0 as the initial state of the PN

Act which is the set of the transition labels of the PN

E ⊆ S×Act × S induced by the PN as follows:

(~s ∈ S ∧~s B t)⇒
(
~s

t→ δ(~s, t) ∈ E)
)

Specification models and their analysis: Petri Nets 26–44

Petri Nets – Token game (Reachability of states)

One the basis of the token game we can now pose interesting questions

about the properties of a PN and ultimately about the modelled system

itself.E.g.:

Can we reach a state s.t. each place holds at least N but at most K

tokens (under- or overflow of Buffers in a chip-design)?

Can we reach a state where everything is blocked?

Such questions are denoted reachability problems, since they can be

solved by checking if a respective state can be reached strating from the

initial state ~s0.

−→ Example 2.1: Washing maschine

Specification models and their analysis: Petri Nets 27–44

Petri Nets – Reachability question

We formalize this as follows:

Definition 2.5: Reachability problem/question

Given a PN P and its initial state ~s0, is it possible to reach a dedicated

state ~sb by executing a transition sequence σ := ti , . . . , tj with ti , tj ∈ T

starting from the initial state ~s0. I.e. formally we are looking for a

sequence σ := ti , tj . . . tk s.t. ~s0
ti→ ~sa

tj→ . . .~sc
tk→ ~sb where one also writes

~s0
σ→ ~sb for short.

How would you proceed?

Specification models and their analysis: Petri Nets 28–44

Petri Nets – How-to solve the reachability problem

There are several ways to answer this question, we discuss two necessary

(not sufficient!) methods for deciding the reachability of a state.

1 Algebraic solution based on state equations: Solution of a system

of linear equation is a necessary condition for reachability for

standard PN only.

Absence of solution implies non-reachability of the resp. state.

2 Algorithmic solution (brute-force method): Generation of the

reachability graph and check the states on-the-fly.

Termination implies reachability of the searched state.

Specification models and their analysis: Petri Nets 29–44

Petri Nets – Algebraic approach (state equations)

The incidence matrix A ∈ N|P|×|T |0 describes the token-flow w. r. t. place

i (row index) and transition j (column index).

aij =W(tj , pi)−W(pi , tj) (gain of place i when transition j fires)

idle

finished

wash

lock_door

2

wait

insertCoin returnCoin

2

trigger

A := ?

~s0 := ?
−→ Example 2.2:

Washing machine

Specification models and their analysis: Petri Nets 30–44

Petri Nets – Algebraic approach (state equations)

Let the firing vector ~ui ∈ N|T |0 be the indicator for the firing of

transition ti , i. e., ~ui [i] := 1 and ~ui [j] := 0 for i 6= j .

What is the PN semantics of ~sc + A · ~ui?

−→ Example 2.3: Washing machine

For a transition sequence σ of length |σ| one can construct the linear

combination of the firing vectors:

~f :=

|σ|∑
k:=1

~uσ[k]

where σ[k] refers to the k’th transition symbol in the sequence.

−→ Question 2.1: What is the PN semantics of ~sc + A · ~f ?

Specification models and their analysis: Petri Nets 31–44

Petri Nets – Algebraic approach (state equations)

This allows one to test for the reachability of state ~s as follows:

1 Solve(A · ~f = ~s −~s0)

2 if there is no such solution ~f ∈ N|T |0 than there is no sequence of

transition firings leading from ~s0 to ~s.

3 Formally:

(6 ∃~f ∈ N|T |0 : A · ~f = ~s −~s0)⇒6 ∃σ : ~s0
σ→ ~s

−→ Example 2.4: Washing machine

−→ Question 2.2: If there is a solution, what do we know, what can be the problem?

Specification models and their analysis: Petri Nets 32–44

Petri Nets – Algorithmic approach (enumerative)

1 Algebraic solution based on state equations: Solution of a system

of linear equation is a necessary condition for reachability for

standard PN only.

Absence of solution implies non-reachability of the resp. state.

2 Algorithmic solution (brute-force method): Generation of the

reachability graph and check the states on-the-fly:

Termination implies reachability of the searched state.

Specification models and their analysis: Petri Nets 33–44

Petri Nets – Explicit Reachability Set Generation

Reachability algorithm
(1) Stmp := ∅, S := ∅
(2) put ~s0 into Stmp

(3) put ~s0 into S
(4) Call function DFS()

(5) Function DFS()

(6) While (Stmp 6= ∅)
(7) take ~s from Stmp

(8) forall t ∈ T do

(9) ~s ′ := δ(~s, t)

(10) If (~s ′ = ~stest) terminate

(11) Else if (~s ′ 6∈ S)

(12) put ~s ′ into Stmp

(13) put ~s ′ into S
(14) Else do_nothing

(15) endif

(16) od

(17) endwhile

Once this algorithm termi-

nates we know that ~stest is

reachable or not reachable.

−→ Example 2.5: Washing

machine: DFS/BFS

Specification models and their analysis: Petri Nets 34–44

Petri Nets – Interleaving semantics

a

p

b

q (1,0) (0,1)

(0,2)(1,1)(2,0)

a b

(0,0)

a

a

b

b b b

b

a a

a

The execution order of transitions is partly uncoordinated.

This yields an exponential size of a PN’s underlying LTS , i. e., |S| is

exponential w. r. t. the number of concurrently enabled transitions

(= state space explosion problem)

−→ Example 2.6: Washing machine with 2 tokens in place idle

Specification models and their analysis: Petri Nets 35–44

Petri Nets – Properties to be verified

After we have learned how to answer the reachability problem,

(where the proposed techniques may fail), we will now deal with

other properties to be verified.

These properties can be posed as reachability problems. Hence they

can be answered by either directly applying the discussed techniques

or slightly adapted versions.

Excursion:

Properties that can be answered as reachability queries, are denoted safety prop-

erties. But remember, the here presented techniques may fail, but sometimes

we can not do better, depending on the employed high-level formalism, e. g. PN

with inhibitor arcs.

Specification models and their analysis: Petri Nets 36–44

Deadlock-freeness

One of the most basic properties related to the reachability is the

question about the reachability of deadlocks.

Definition 2.6: Deadlock

A state ~s ∈ S of a PN P is denoted deadlock iff

6 ∃t ∈ T : ~s B t

A PN P where no deadlock exists is denoted deadlock-free.

A PN P whose reachability graph is non-terminal is

deadlock-free (or vice-versa)

−→ Example 2.7: Dining philisophers

Specification models and their analysis: Petri Nets 37–44

K -boundedness

Definition 2.7: K -Boundedness

1 A place pj of a PN P with its initial state ~s0 is denoted K -bounded

iff it never holds more than Kj tokens:

pj is Kj -bounded⇔ ∃Kj ∈ N0 : ∀~s ∈ S : ~spj
≤ Kj

otherwise pj is denoted as unbounded.

2 A PN is denoted K -bounded if each of its places is Kj -bounded, i. e.,

P is denoted K -bounded⇔ ∀pj ∈ P : pj is Kj -bounded

Example: Check a system design for buffer-overflows.

In the literature 1-bounded PN are denoted as safe.

−→ Question 2.3: Is the dining philisopher PN bounded?

Specification models and their analysis: Petri Nets 38–44

Reversibility and home states

Besides reachability problems, where are properties which ask about the

structure of the reachability graph.

Definition 2.8: Home state

1 A state ~s ′ is denoted as home state iff it is reachable from every

other state, i. e.,

~s ′ is a home state ⇔ ∀~s ∈ S : ∃σ : ~s
σ→ ~s ′.

2 If ~s0 is a home state than the PN P is denoted reversible.

In fact this is much more complex as a simple reachability query.

1 Algebraic approach: can we exploit this one for home state detection?

2 Algorithmic approach: is much more complicated (cycle detetction).

Specification models and their analysis: Petri Nets 39–44

Petri Nets – Extensions

Many flavors of Petri nets are in use, e.g.

1 PN with inhibitor arcs

2 Colored PN

3 PN with timed behaviour

Specification models and their analysis: Petri Nets 40–44

Petri Nets – Extensions

PN with inhibitor arcs

idle

finished

wash

lock_door

2

wait

insertCoin returnCoin

2

1

2
trigger

A place p connected to a transition t

via an inhibitor arc (⇒ p ∈ 4t)

suppresses the transition’s execution,

i. e., t can only fire iff ~s [p] <W(p, t)

holds.

one solely needs to extend the rule for

enabledness of t:

~s B t ⇔ {(∀p ∈ •t : ~s [p] ≥ W(p, t))

∧ : (∀p ∈ 4t : ~s [p] <W(p, t))}
Note:

PN with more than one inhibitor arc posseses Turing-power, i. e.,

1 they cannot be transformed into regular weighted PN

2 reachability of a state is not decidable; the methods we looked at are

therefore the best one can do.
Specification models and their analysis: Petri Nets 41–44

Petri Nets – Extensions

Colored PN

idle

wash

lock_door

2

2

finished

returnCoin

insertCoin

rmv

fakeCoin

trigger

wait

Tokens carry colors

Transition are colored, i. e., they only

consume and generate tokens of a

specific color

Colored PN posses Turing-power:

1 cannot be transformed into regular

PN

2 reachability is not decidable.

Specification models and their analysis: Petri Nets 42–44

Petri Nets – Extensions

Timed PN (TPN)

[0; 8)

idle

wash

lock_door

2

wait

insertCoin

2

finished [3600,5400]

[0.75;1]

[0;0.5]
returnCoin

trigger

Enabled transitions are executed within

some time interval [a, b]

(→ Timed Automata)

Specification models and their analysis: Petri Nets 43–44

Petri Nets – Extensions

Generalized Stochastic PN

(GSPN)

idle

wash

2

2

insertCoin

rmv; 1

lock_door; 1

finished; λ

returnCoin; 1 trigger

wait

In a GSPN we have 2 types of transitions

Weigthed transition w is executed

with some probability:

Probw (~s) :=
W(w)∑

tk∈{t | ~sBt}W(tk)

Markovian transition m is executed

after an exponentially distributed

delay time t

Fdelay of m(t) := 1− e−λmt

(→ Continous-time Markov chains)

Specification models and their analysis: Petri Nets 44–44

