The dining philosophers Dijkstra'65 i oswiioiine scsosners sroer

There are N philosophers sitting around a circular table either thinking or
eating pasta. Each philosopher needs his left and right fork to eat, but there is
only one fork between each 2 philosophers. Design an algorithm that the

philosophers can follow.

Consider the following protocol (= sequence of interaction)

void philosopher()

while(1) {
think();
get_left_fork();
get_right_fork();
eat();
put_left_fork();
put_right_fork();

Problem?
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Motivation

@ In the following we will develop a concise (mathematical) framework for

formally describing systems of interest (— formal model).

@ This framework allows one to formally, i. e., mathematically reason
about a model’s and hence a system’s correctness w.r.t. dedicated

properties, e. g. deadlock-freeness etc.

@ In principle we could start with any programming language. However,
their interpretation is very complicated (address arithmetic, arbitrary data
types, ...). Also only certain aspects of a system matter, where one may
abstract away many details. Hence it appears useful to follow a more
abstract view and speak here only about very simple “languages” for
describing systems. Such methods are commonly denoted as high-level

model description methods.
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Motivation

@ Even though the high-level model description methods appear very
simple, they possess a clearly defined (execution) semantics. This

semantics allows us to map them to graphs.

@ These graphs represent all possible behaviors of the specified
high-level description.

@ Hence the basic objects which represent the entities to be studied
are graphs. Therefore we will briefly re-visit some basic definitions,
which you probably have already seen before.

@ Don't mind the formal notation, this will be made clear by examples

and allows you to understand the resp. literature.
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@ Graph Theory: Some Definitions
@ Introduction to Petri Nets

@ Introduction to Computation Tree Logic and related model
checking techniques

Q Introduction to Binary Decision Diagrams



Part |

Graph Theory: Some Definitions




Preliminaries — Foundations of Graphs (at a glance)

e Definition 1.1: Graph
A graph G is a pair (V,E) where
° © Vs a discrete set of vertices (or nodes)
{vi,...,vm}
@ E CV xVis a discrete set of pairs
e {(vi,vj) | for somei,j € {1,...,m}}. One

commonly denotes these pairs as edges or arcs.
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Preliminaries — Foundations of Graphs (at a glance)

Definition 1.2: Directed Graph (Digraph)

@ If the elements of [E are ordered in such a way
that (v, w) # (w, v) the elements of E are
denoted as directed edges or directed arcs.

@ A graph with such a property is denoted
directed graph or digraph for short.
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Preliminaries — Foundations of Graphs (at a glance)

@ In a digraph and for an ordered pair (u, v) € E vertex u is denoted
as predecessor or parent of vertex v and vertex v is denoted as
successor or child of vertex u.

@ This can be extended to the level of sets of children and parent
nodes as follows:

o Post(u) :={v e V|(u,v) € E}

is the set of all children or direct successors of a vertex u.

o Pre(v) :={ueV|(uv)eE}

is the set of all parents or direct predecessors of a vertex v.

© The above sets are very helpful, once we want to operate (traverse)

on graphs.
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Preliminaries — Foundations of Graphs (at a glance)

Definition 1.3: Weighted Graphs

o If the edges of a graph are labelled with
elements from R one speaks of a weighted
graph.

@ In fact the set of edges of a weighted digraph
is a ternary relation (set of triples):
ECVxRXxV.

@ Function W :V xV — IR gives one the
weight associated with the respective edge
(u,x,v): (u,x,v) € E=W(u,v) = x and

W(u, v) := 0 for all triples not contained in E.
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Preliminaries — Incidence/transition matrices

@ Incidence matrix: Each finite graph G consisting of n vertices can
be mapped to a matrix T € {0,1}"*" as follows:

1 & (v,vy)€eE
a,-j =
0 else

Such a matrix is denoted as incidence matrix. Note, that this

requires a consistent numbering of the vertices.

@ In case Jaj; ¢ {0,1} one speaks of a weighted incidence or
transition matrix A of G.

Note: Sometimes the incidence/transition matrix is defined as the trans-
posed AT

—— Example 1.1: A of the weighted graph shown before
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Preliminaries — Foundations of Graphs (at a glance)

Definition 1.4: Labelled Graphs

@ If the edges of a graph are labelled with elements
from a finite set, e.g. | € Act one speaks

commonly of a labelled graph.

@ In fact the set of edges of a labelled digraph is
once again a ternary relation: E CV x Act x V.

Note:

A labelled graph is also often refered to as labelled transition system (LTS ),
where instead of vertices one speaks of states.
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Preliminaries — Labelled Transition System

Definition 1.5: Labelled Transition System (LTS )

A LTS is a quadruple 7 := (S, So, Act, E), where
Q S:={51,...,5,} is an ordered (indexed) set of states with
@ So as the set of initial states.
© Act is the discrete set of transition labels,

Q@ E CSx Act xS is an ordered (indexed) set of labelled state-to-state

transitions.
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Preliminaries — Labelled Transition system
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Preliminaries — Termination and Determinism of LTS

Note:
LTS are essentially the semantics of the here discussed high-level mod-
elling techniques, where the techniques of model checking allow us to rea-
son about their properties. In the following we briefly strive some important
definitions.
o A LTS T is defined non-terminal if each state has at least one
out-going edge otherwise 7 is called terminal.
@ A LTS 7T is defined deterministic if each state has at most one
out-going edge with the same edge label otherwise 7 is denoted as

non-deterministic.

Are non-deterministic finite LTS more expressive than deterministic ones?
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Preliminaries — Termination and Determinism (Examples)
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©® Graph Theory: Some Definitions
@ Introduction to Petri Nets <

@ Introduction to Computation Tree Logic and related model

checking techniques

@ Introduction to Binary Decision Diagrams
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Petri Nets




Petri Nets — Introduction

A Petri Net (PN) is a weighted(?), bipartite(?) digraph(?) invented by Carl
Adam Petri in his PhD-thesis “Kommunikation mit Automaten” (1962).
Many flavors of Petri nets are in use, where we start with the simplest kind

(almost).
Example:
insertCoin
Circles P := {wait,wash,...} (set of places)
wait
Boxes T := {insertCoin, lock_door, ...} (set of transitions)
Lan tock-door Arcs C :={...,(lock_door,wash),...} (set of edges)
1 e
wash Weights W := here constant 1 for each arc

Initial marking Mg := { mg(wait) := 0,
finighed mo(wash) := 0, mo(idle) := 1}.
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Definition 2.1: (Weigthed) Petri Net

A Petri net (PN) P is a 5-tuple (P, T, C,W, My), where
Q@ P:={p1,...,pm} is a finite, ordered (indexed) set of places and
Q T :={t1,...,ts} is a finite, ordered (indexed) set of transitions,
Q@ CC(PxT)U(T x P), is a connection or flow relation,
Q@ W : C — Ny assigns a weight to each element of C and

@ mo: p € P Ny gives the initial marking for place p, i.e., it assigns a
number of token to place p. The set of all such initial markings is denoted
M (= the initial marking of P).

@ An ordering defined on the places yields that the place markings mg(p;) can be
understood as the component of a vector $][i] s.t. we can map the initial

marking My to the dedicated vector 5.

@ A vector of this kind is denoted in the following as state vector or simply as state.
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Petri Nets — Introduction

M insertCoin ¢ insertCoin insertCoin
wait wait wait
lock_door lock_door lock_door

idle idle idle
wash wash wash
finished the finished finished
initial state of the PN another state of the PN and another state
50 = (mo(wait), mo(wash), 5=(1,1,1) 5§=(1,1,0)
mo(idle))
= (07 07 1)

Note:

For differing among the different states of a PN we index them accordingly,

i. e., we write S when referring to the k'th state.
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Petri Nets — Operational Semantics (Pre - and Post sets)

Definition 2.2: Pre - and Post sets

Q Pre-set of a transition t € T: et := {p|(p,t) € C}
@ Post-set of a transition t € T: te = {p|(t,p) € C}

analogously we define pre (ep) and post sets (pe) for each place p € P.

o ofy3 = {

@ lyze = {
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Petri Nets — Operational Semantics (Enabling)

The operational (or execution) semantics of PN stem from the movement
of tokens in the net:

@ Transition consume tokens from input places (pre set) and
@ transition add tokens to their output places (post set),

@ where we execute the transitions one by another (=interleaving

semantics).

But when can we actually execute transitions 7
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Petri Nets — Operational Semantics (Enabling)

o Enabled transition:

a transition t € T is enabled in a state S, denoted 51> t, iff the
places of its pre-set hold sufficiently many tokens
S>te (Vpeeot:S[pl > W(p,t))

o Enabling state:
a state S is denoted enabling for a transition t iff s> t holds.

@ Once a transition is enabled in a state § it can be executed (=fired):

When we execute an enabled transition we destroy suffi-
ciently many tokens on the input places and generate the

required number of tokens on the output places of t.
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Petri Nets — Operational Semantics (Firing)

Given a state 5 of a PN we want to compute its successor state 5/ w.r. t.
an enabled transition. To do so we define a transfer or transition function

of a transition t as follows:

s[p] SpdtelUet
S[p] — W(p, t S pcette
5(5,t) := 5" withs’ [p] := 2 (p-1) P o
$p] + W(t, p) Spetenet

S[pl = W(p,t) + W(t,p) < pectenet

o if Si>t then 5/ :=§(5, t),

e This gives a set of triples (5, t,5’) where we also use the notation

St oy
§— 5.
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Petri Nets — Reachability set

o Token game: Moving the tokens around the net by executing
enabled transitions.

@ Sequential execution of transition functions of enabled transitions
allows one to construct a set of reachable states, denoted as

reachability set of a PN P w.r.t. its initial state ;.

Definition 2.3: Reachability set

Q So = {5}

Q S;:=S;1U{0(5 t)|VseS_1,Vt € T where 51> t}

© we are intrested in the largest of such sets So CS; C ... C S which
we denote as set of reachable states S of a PN P and w.r.t. 5.

Note:

This allows one to construct a (not necessarily finite) LTS for each PN and an

initial state ;. Such an LTS constitutes the semantic model of a PN.
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Petri Nets — Reachability graph

Definition 2.4: Reachability graph

A reachability graph RG(P,5,) of a PN P and its initial state 5, is a LTS
L(S, Sy, Act,E) with

@ S which is the set of reachable states of the PN.
@ Sp := {5} with § as the initial state of the PN
o Act which is the set of the transition labels of the PN
o EC S x Act x S induced by the PN as follows:

(5ESAS>t) = (57—% 5(3,t) eE))
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Petri Nets — Token game (Reachability of states)

One the basis of the token game we can now pose interesting questions
about the properties of a PN and ultimately about the modelled system
itself.E.g.:

@ Can we reach a state s.t. each place holds at least N but at most K
tokens (under- or overflow of Buffers in a chip-design)?

@ Can we reach a state where everything is blocked?

Such questions are denoted reachability problems, since they can be
solved by checking if a respective state can be reached strating from the

initial state ;.

— Example 2.1: Washing maschine
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Petri Nets — Reachability question

We formalize this as follows:

Definition 2.5: Reachability problem/question

Given a PN P and its initial state S, is it possible to reach a dedicated
state 5, by executing a transition sequence o :=t;,...,tj with t;,; € T
starting from the initial state §;. l.e. formally we are looking for a
sequence o = tj, tj...tx s.t. § 53 5, ...5. 5, where one also writes

- 0 =
59 — 5}, for short.

How would you proceed?
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Petri Nets — How-to solve the reachability problem

There are several ways to answer this question, we discuss two necessary

(not sufficient!) methods for deciding the reachability of a state.

@ Algebraic solution based on state equations: Solution of a system

of linear equation is a necessary condition for reachability for
standard PN only.

Absence of solution implies non-reachability of the resp. state.

@ Algorithmic solution (brute-force method): Generation of the

reachability graph and check the states on-the-fly.
Termination implies reachability of the searched state.
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Petri Nets — Algebraic approach (state equations)

The incidence matrix A € N‘OPIX‘Tl describes the token-flow w.r.t. place

i (row index) and transition j (column index).

ajj = W(tj, pi) — W(pi, tj) (gain of place i when transition j fires)

insertCoin ¢

returnCoin trigger

?
?

A
S0

a
L
finished — Example 2.2:

Washing machine
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Petri Nets — Algebraic approach (state equations)

@ Let the firing vector i; € N‘OTl be the indicator for the firing of
transition t;, i.e., G;[{] := 1 and &;[j] := 0 for i # j.

What is the PN semantics of 5. + A - 4;7?

— Example 2.3: Washing machine

e For a transition sequence o of length |o| one can construct the linear
combination of the firing vectors:

lo]
f .= Z ﬁg[k]
k=1

where o[k] refers to the k'th transition symbol in the sequence.

— Question 2.1: What is the PN semantics of 5. + A - f?
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Petri Nets — Algebraic approach (state equations)

This allows one to test for the reachability of state s as follows:

Q Solve(A-f=5-5)
Q if there is no such solution f € Nng than there is no sequence of

transition firings leading from §; to s.

© Formally:
(BFeNy A-F=5-5)=80:5 25
— Example 2.4: Washing machine

— Question 2.2: If there is a solution, what do we know, what can be the problem?
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Petri Nets — Algorithmic approach (enumerative)

© Algebraic solution based on state equations: Solution of a system

of linear equation is a necessary condition for reachability for
standard PN only.

Absence of solution implies non-reachability of the resp. state.

@ Algorithmic solution (brute-force method): Generation of the

reachability graph and check the states on-the-fly:

Termination implies reachability of the searched state.
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Petri Nets — Explicit Reachability Set Generation

Reachability algorithm

(1) Stmp:=0,S:=0 Once this algorithm termi-
tmp - — Y, =

nates we know that S is

(2) put 5 into Simp

(3) put § into S reachable or not reachable.
(4) Call function DFS()

(5) Function DFS()

(6)  While (Stmp # 0)

g; ::i{jls]_irngS:;p — Example. 2.5: Washing
9) § = 6(5, 1) machine: DFS/BFS
(10) If (5 = Siest) terminate

(11) Else if (3/ ¢S)

(12) put 5/ into Simp

(13) put §/ into S

(14) Else do_nothing

(15) endif

(16) od

(17) endwhile
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Petri Nets — Interleaving semantics

a

L I b (0,0)
' ¢ SR
(2,0b) (1,1) (0,2)
a. a. b a. b

# RN a4 N

@ The execution order of transitions is partly uncoordinated.

@ This yields an exponential size of a PN's underlying LTS, i.e., |S|is

exponential w. r.t. the number of concurrently enabled transitions
(= state space explosion problem)

—— Example 2.6: Washing machine with 2 tokens in place idle

Specification models and their analysis: Petri Nets 35-44



Petri Nets — Properties to be verified

o After we have learned how to answer the reachability problem,

(where the proposed techniques may fail), we will now deal with
other properties to be verified.

@ These properties can be posed as reachability problems. Hence they
can be answered by either directly applying the discussed techniques
or slightly adapted versions.

Excursion:

Properties that can be answered as reachability queries, are denoted safety prop-
erties. But remember, the here presented techniques may fail, but sometimes

we can not do better, depending on the employed high-level formalism, e. g. PN
with inhibitor arcs.
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Deadlock-freeness

One of the most basic properties related to the reachability is the
question about the reachability of deadlocks.

Definition 2.6: Deadlock

A state 5 € S of a PN P is denoted deadlock iff

AteT: s>t

@ A PN P where no deadlock exists is denoted deadlock-free.

@ A PN P whose reachability graph is non-terminal is
deadlock-free (or vice-versa)

—— Example 2.7: Dining philisophers
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K-boundedness

Definition 2.7: K-Boundedness

@ A place p; of a PN P with its initial state 5, is denoted K-bounded
iff it never holds more than Kj tokens:

pjis Kj-bounded & 3K; e Ng : V5 € S: §pj <K;

otherwise p; is denoted as unbounded.

@ A PN is denoted K-bounded if each of its places is Kj-bounded, i.e.,

P is denoted K-bounded < Vp; € P : p;is Kj-bounded

o Example: Check a system design for buffer-overflows.

@ In the literature 1-bounded PN are denoted as safe.
—— Question 2.3: Is the dining philisopher PN bounded?
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Reversibility and home states

Besides reachability problems, where are properties which ask about the
structure of the reachability graph.

Definition 2.8: Home state

Q A state §’ is denoted as home state iff it is reachable from every
other state, i.e.,

5'is a home state < VseS:30:52 3.

@ If 5 is a home state than the PN P is denoted reversible.

In fact this is much more complex as a simple reachability query.
© Algebraic approach: can we exploit this one for home state detection?

@ Algorithmic approach: is much more complicated (cycle detetction).
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Petri Nets — Extensions

Many flavors of Petri nets are in use, e.g.
@ PN with inhibitor arcs
@ Colored PN
© PN with timed behaviour
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Petri Nets — Extensions

PN with inhibitor arcs @ A place p connected to a transition t
via an inhibitor arc (= p € At)
i"59"°°i"T§ retumCoin ¢, oo suppresses the transition’s execution,
wait i.e., t can only fire iff §[p] < W(p, t)
holds.

lock_door @ one solely needs to extend the rule for

enabledness of t:
s>t {(Vpeeot:S[p] > W(p,t))
A (Vp € At:S[p] <W(p, 1))}

finished

Note:
PN with more than one inhibitor arc posseses Turing-power, i. e.,
@ they cannot be transformed into regular weighted PN

@ reachability of a state is not decidable; the methods we looked at are

therefore the best one can do.
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Petri Nets — Extensions

Colored PN

insertCoin  fakeCoin
@ Tokens carry colors

riv returnCoin ¢ rigger

lock_door

@ Transition are colored, i.e., they only

consume and generate tokens of a

specific color

@ Colored PN posses Turing-power:

© cannot be transformed into regular
PN
@ reachability is not decidable.
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Petri Nets — Extensions

Timed PN (TPN)

[0; ) !
insenCoirT return[%%rls] e
I rl er

wait

Enabled transitions are executed within
some time interval [a, b]
(— Timed Automata)
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Petri Nets — Extensions

Generalized Stochastic PN

(GSPN)
In a GSPN we have 2 types of transitions

insertCoin

@ Weigthed transition w is executed

rmv; 1 returnCoin; 1 trigger

with some probability:

- W(w)
Prob,,(5) :=
N SRR T

@ Markovian transition m is executed

lock_door; 1

finished; A

after an exponentially distributed

delay time t
- —Amt
Fde/ay,of,m(t) =1—-e

(— Continous-time Markov chains)

Specification models and their analysis: Petri Nets 44-44



	Graph Theory: Some Definitions
	Petri Nets

