Discrete Event Systems Solution to Exercise 8

1 Gloriabar

a) The situation can be modeled by a $\mathrm{M} / \mathrm{M} / 1$ queue. We have an arrival rate of $\lambda=540 /(90$. $60)=1 / 10$ (persons per second), and $\mu=1 / 9$ (persons per second). Thus $\rho=\lambda / \mu=9 / 10$. We can apply Little's Law (slides 76 ff .) and therefore, we can use the formulae for the response and waiting time from slide 79: The expected waiting time is $W=\rho /(\mu-\lambda)=81$ seconds. The expected time until the student has paid for her menu is given by $T=$ $1 /(\mu-\lambda)=90$ seconds.
b) We use the formula for the expected number of jobs in the queue from slide 79 and obtain queue length of $N=\rho^{2} /(1-\rho)=8.1$.
c) We require that $T=1 /(\mu-0.1)=90 / 2$. Thus, $\mu=11 / 90$, i.e., instead of 9 secs, the service time should be $90 / 11 \approx 8.2$ secs.

2 "Hopp FCB!"

a) We know that the minimum of i independent and exponentially distributed (with parameter $\lambda)$ random variables is an exponentially distributed random variable with parameter $i \lambda$. Thus, we have the following birth-death-process:

b) Let π_{i} be the probability of state i in the equilibrium. From slide 87 , we know that

$$
\pi_{i}=\pi_{0} \cdot \prod_{j=0}^{i-1} \frac{\lambda_{j}}{\mu_{j+1}}
$$

and thus

$$
\pi_{i}=\pi_{0} \cdot \frac{\lambda_{0} \cdot \lambda_{1} \cdots \lambda_{i-1}}{\mu_{1} \cdot \mu_{2} \cdots \mu_{i}}
$$

Applying this formula to our process yields

$$
\pi_{i}=\pi_{0} \cdot \frac{n(n-1) \cdots(n-i+1) \cdot \lambda^{i}}{1 \cdot 2 \cdots \cdot i \cdot \mu^{i}}=\pi_{0} \cdot\binom{n}{i}(\rho)^{i}
$$

where $\rho:=\frac{\lambda}{\mu}$. We know that the sum of all probabilities equals 1 , so we have

$$
\begin{align*}
& \sum_{i=0}^{n} \pi_{i}=\pi_{0} \sum_{i=0}^{n}\binom{n}{i} \rho^{i}=1 \\
& \Leftrightarrow \pi_{0}(1+\rho)^{n}=1 \tag{1}
\end{align*}
$$

For conversion (1) we used the formula for the binomial series:

$$
(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}
$$

Finally, we obtain

$$
\pi_{i}=\frac{\binom{n}{\vdots} \rho^{i}}{(1+\rho)^{n}}
$$

c) A team is able to play if and only if there are at least eleven fit players:

$$
\pi_{11}+\pi_{12}+\cdots+\pi_{20}=0.965
$$

Thus, the FCB team has enough players that it can participate in most of the matches (probability > 95%).

3 Theory of Ice Cream Vending

The situation can be described by a classic $M / M / 2$ system. According to slide 90 , there is an equilibrium iff

$$
\rho=\lambda /(2 \mu)<1
$$

For the stationary distribution, it holds that

$$
\pi_{0}=\frac{1}{1+2 \rho+4 \rho^{2} /(2(1-\rho))}=\frac{1-\rho}{1+\rho} .
$$

4 Queuing Networks

a)

b) We have an open queuing network and hence we can apply Jackson's theorem (slides 97 ff):

$$
\begin{array}{r}
\lambda_{d}=\lambda+\lambda_{b}\left(1-p_{b}\right) \\
\lambda_{t}=\lambda_{d}\left(1-p_{d}\right) \\
\lambda_{b}=\lambda_{t}\left(1-p_{t}\right)
\end{array}
$$

Solving this equation system gives:

$$
\begin{aligned}
\lambda_{d} & =\frac{\lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)} \\
\lambda_{t} & =\frac{\left(1-p_{d}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)} \\
\lambda_{b} & =\frac{\left(1-p_{d}\right)\left(1-p_{t}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)}
\end{aligned}
$$

c) The waiting time is given by $W_{t}=\rho_{t} /\left(\mu_{t}-\lambda_{t}\right)$, where $\rho_{t}=\lambda_{t} / \mu_{t}$.
d) We apply the given values to the equations for λ_{d}, λ_{t} and λ_{b} and obtain:

$$
\lambda_{d}=10, \quad \lambda_{t}=25 / 3, \quad \lambda_{b}=20 / 3
$$

Therefore, by the formula of slide 73 , the expected number of customers in the system is given by

$$
N=\frac{\lambda_{d}}{\mu_{d}-\lambda_{d}}+\frac{\lambda_{t}}{\mu_{t}-\lambda_{t}}+\frac{\lambda_{b}}{\mu_{b}-\lambda_{b}}=8
$$

Applying Little's formula to the entire system gives $T=N / \lambda=8 / 5$ hours.
e) We require $\lambda_{t}=1$ and therefore

$$
\frac{\lambda\left(1-p_{d}\right)}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)}=1
$$

Solving the equation for p_{d} yields:

$$
p_{d}=1-\frac{1}{\lambda+\left(1-p_{t}\right)\left(1-p_{b}\right)}=1-\frac{1}{5+\frac{4}{5} \cdot \frac{3}{4}}=1-\frac{1}{\frac{28}{5}}=\frac{23}{28} .
$$

