Discrete Event Systems Sample Solution to Exercise 4

1 Regular and Context-Free Languages

a) Sometimes, even simple grammars can produce tricky languages. We can interpret the 1 s and 2s of the second production rule as opening and closing brackets. Hence, $L(G)$ consists of all correct bracket terms where at least one 0 must be in each bracket.
Choose $w=1^{p} 02^{p} \in L(G)$. Let $w=x y z$ with $|x y| \leq p$ and $|y|>0$ (pumping lemma). Because of $|x y| \leq p, x y$ is in the first 1^{p} of w. According to the pumping lemma, we should have $x y^{i} z \in L(i \geq 0)$. However, by choosing $i=0$ we delete at least one 1 and get a word $w^{\prime}=1^{k} 02^{p}$ where $k<p . w^{\prime}$ is not in L since it has less 1 s than 2 s . w is not pumpable. Therefore $L(G)$ is not regular.
b) Since every regular language is also context-free, we can choose an arbitrary regular language. For example, we can choose the language $L=\left\{0^{n} 1, n \geq 1\right\}$ which is clearly regular. The corresponding context-free grammar is $S \rightarrow 0 S \mid 01$.

2 Context-Free Grammars

a)

$$
\begin{array}{c|c|}
S \rightarrow S A S & A \\
A \rightarrow 0 \mid &
\end{array}
$$

Note: The language is regular!
b) One possible solution is to use three productions: A first one which guarantees that there is at least one ' 1 ' more; a second one which produces all possible strings with the same number of ' 0 ' and ' 1 '; and finally, a production to add further 1's at arbitrary places:

$$
\begin{aligned}
& S \rightarrow T 1 T \\
& T \rightarrow T 0 T 1 T|T 1 T 0 T| U \\
& U \rightarrow 1 U \mid \epsilon
\end{aligned}
$$

3 Pushdown Automata

a) $\epsilon, 0,00,()$
b) It is unambiguous, i.e., there is a unique derivation tree for each word. Each word $w \neq \epsilon$ in $L(G)$ contains a rightmost 0 or parenthesis expression ' $(S)^{\prime}$ that can be unanimously assigned to a A in each node of the derivation tree. Due to $S \rightarrow S A$, each sequence of A s is unambiguous.
c) A push-down automaton M is deterministic iff in each state, there is exactly one successor state for any combination $(x, y) \in \Sigma \times \Gamma$ where Σ is the string input alphabet and Γ is the stack alphabet. Note that if a state q has only one outgoing transition ' $\epsilon, \epsilon \rightarrow \$$ ' the PDA is still deterministic since there is no ambiguity of what the successor state of q will be. If a state q, however, has two outgoing transitions, ' $\epsilon, \$ \rightarrow \$$ ' and ' $(, \epsilon \rightarrow \$$ ', it is unclear which transition the system should take if the string input in state q is ' (' and the top element on
the stack is ' $\$$ '. As with deterministic FAs we take the liberty of omitting transitions leading to an (imaginary) fail state as well as the fail state itself when drawing deterministic PDAs. An instance of a deterministic PDA accepting $L(G)$ is the following:

If we would assume our PDA recognizes the end of the input string (denoted by '-') the following deterministic pushdown automaton would also do the job:

Note that by replacing '-' in the above PDA by ' ϵ ' we get a correct non-deterministic PDA for $L(G)$.

4 Pumping Lemma revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. I.e. there is a p, such that for every word $u \in L$ with $|u| \geq p$ it holds that: u can be written as $u=x y z$ with $|x y| \leq p$ and $1 \leq|y| \leq p$, such that $\forall i \geq 0: x y^{i} z \in L$.
In order to obtain the contradiction, we need to show that there is at least one word $w \in L$ with $|w| \geq p$ for which it is not possible to form the string partition $w=x y z$, s.t. $|x y| \leq p$, $1 \leq|y| \leq p$, and $\forall i \geq 0: x y^{i} z \in L$.
First, we need to overcome the problem that we do not know the value of p. The standard trick is to consider words whose length depends on p. E.g. consider the word $w=1^{p^{2}} \in L$. For sure, $|w| \geq p$.
By the pumping lemma, we can write $w=1^{p^{2}}$ as $x y z$. What remains to show is that there is no partition $x y z$ that satisfies $|x y| \leq p, 1 \leq|y| \leq p$, and $\forall i \geq 0: x y^{i} z \in L$.
The expression $w=x y^{i} z$ can be written as $x y^{i} z=1^{|x|} 1^{i|y|} 1^{|z|}$. Because $|w|=p^{2}$, we know that $|z|=p^{2}-|x|-|y|$, and therefore, $x y^{i} z=1^{|x|} 1^{i|y|} 1^{p^{2}-|x|-|y|}=1^{p^{2}+(i-1)|y|}$.
To obtain the contradiction, we need to find an $i \geq 0$, such that $x y^{i} z \notin L$. For example, consider $i=0$. Then we have $w^{0}=x y^{0} z=1^{p^{2}-|y|}$. Clearly, $\left|w^{0}\right|<p^{2}$, as $|y| \geq 1$. Note that we argue independent of the partition $w=x y z$, we do not pick a specific x and y and therefore the following holds for all possible partitions.

If $w^{0} \in L$, then $\left|w^{0}\right|$ is a square number, smaller than p^{2}. But the next smaller square number, $(p-1)^{2}$, is strictly smaller than $\left|w^{0}\right|:(p-1)^{2}=p^{2}-2 p+1<p^{2}-p \leq p^{2}-|y|=\left|w^{0}\right|$, which shows that $\left|w^{0}\right|$ cannot be a square number. This shows that there is no partition for w that allows to fulfill the pumping lemma conditions. But this should be the case if L is regular. Thus, we have a contradiction, which concludes the proof.
b) Consider the alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and the language $L=\bigcup_{i-1}^{n} a_{i}^{*}$. The language is regular, as it is the union of regular languages, and the smallest possible pumping number p for L is 1 . But any DFA needs at least $n+1$ states to distinguish the n different characters of the alphabet. Thus, for the DFA, we cannot deduce any information from p about the minimum number of states.

The same argument holds for the NFA.

