
Distributed
Computing Group

HS 2009 Prof. Dr. R. Wattenhofer
Raphael Eidenbenz

Jasmin Smula

Discrete Event Systems

Solution to Exercise 12

1 Bin Packing

The algorithm mentioned in the exercise is 2-competitive. The proof works as follows: Consider
the bins in the order in which they were closed. Consider two consecutive bins i and i+1. Assume
that the algorithm fills bin i up to level x ≤ 1. The next item (the first to be put into bin i+ 1)
must be of size larger than 1 − x. Otherwise, the algorithm would not have opened a new bin.
Therefore, that any two consecutive bins must have total size strictly more than 1. Because the
optimum must also use at least one bin to store this size, the algorithm requires at most twice as
many bins.

To show that there is indeed a sequence which the optimum can serve using half the number
of bins as the algorithm, assume the following input sequence:

I =
(

1,
2
n
, 1,

2
n
, 1,

2
n
, . . . , 1,

2
n

)
︸ ︷︷ ︸

n items

.

Clearly, our algorithm ALG needs to open a new bin after every item. That is, the number of
bins opened by ALG is costALG(I) = n. On the other hand, the optimal algorithm OPT can put
all n/2 objects of size 1 into one bin each and all the n/2 objects of size 2/n together into one
bin. Hence, costOPT (I) = n/2 + 1.

The competitive ratio c for input sequence I is therefore

c ≥ costALG(I)
costOPT (I)

=
n

n
2 + 1

=
2n
n+ 2

.

For large n, this asymptotically tends to 2.

2 Paging

a) i) FIFO (First-in/First-out): Replace the page that has been in the cache longest.
The FIFO strategy is 3-competitive. In order to prove this, observe that on any con-
secutive input subsequence containing 3 or fewer distinct page references, FIFO incurs
3 or fewer page faults. Now, consider a 3-phase partition of the input sequence I. A
3-phase partition is defined as follows: Phase 0 is the empty sequence. For every i ≥ 1,
phase i is the maximal sequence following phase i− 1 that contains at most 3 distinct
page requests; that is, if it exists phase i+ 1 begins on the request that constitutes the
4th distinct page request since the start of the ith phase.
By the above observation, it is clear that FIFO incurs at most 3 page faults for any
phase i ≥ 1, because it cannot fault twice on the same page. For any i ≥ 1, let q be
the first request of phase i and consider the input sequence starting with the second
request of phase i up to and including the first request of phase i + 1. The optimal
algorithm OPT has 2 pages (not including q), and there are 3 requests (except if phase



i is the last phase) in this sequence not counting q, so that OPT must incur at least 1
page fault in this phase.
Combining the two bounds, we have

costFIFO(I) ≤ 3 · costOPT (I) + α,

where α ≤ 3 is the maximal number of page faults incurred by FIFO during the last
phase.
A sequence for which FIFO actually yields three times as many page faults as OPT is
given by I = (p1, p2, p3, p4, p1, p2, . . . ).

ii) LFU (Least Frequently Used): Replace the page that has been requested the least since
entering the fast memory.
The LFU strategy is not competitive. Consider the following request sequence:

I = (p1 , p1 , p2 , p2 , p3 , p4 , p3 , p4 , p3 , . . .)

In this sequence, LFU keeps on exchanging p3 and p4 ad infinitum, while the optimum
can keep these two pages in the cache.

iii) LIFO (Last-in/First-out): Replace the page most recently moved to the cache.
For the same reason as LFU, the LIFO strategy is also not competitive. Consider the
following request sequence:

I = (p1 , p2 , p3 , p4 , p3 , p4 , p3 , . . .)

In this sequence, LIFO keeps on exchanging p3 and p4 ad forever. It is therefore not
competitive.

iv) LRU (Least Recently Used): When eviction is necessary, replace the page whose most
recent request was the earliest.
Like the FIFO strategy, LRU is 3-competitive. The reason is that (like FIFO), LRU has
the property that on any consecutive input subsequence containing 3 or fewer distinct
page references, it incurs at most 3 page faults. The remainder of the proof is then
equivalent to the FIFO case.

v) FWF (Flush When Full): Whenever there is a page fault and there is no space left in
the cache, evict all pages currently in the cache.
The FWF algorithm is also 3-competitive. Consider the first phase, i.e., the first con-
secutive input subsequence containing 3 distinct page references. Clearly, FWF does
not operate a flush. Now, consider the subsequent phase. In this phase, there can be
at most one flush and hence, three page faults. Similarly, in every subsequent phase,
there can be at most one flush and three page faults. From this observation, the proof
follows like in the FIFO case.

b) We prove the following theorem:

Theorem 2.1. There exists no deterministic online paging algorithm ALG with a competi-
tive ratio better than 3.

Proof. Assume that there are 4 pages, p1, . . . , p4. We prove that there is an arbitrarily long
request sequence I for which |I| = costALG(I) ≥ 3 · costOPT (I). Without loss of generality,
assume that ALG initially holds p1, p2, and p3 in its cache. We define a “cruel” request
sequence I = (r1, r2, r3, . . . ) inductively: r1 = p4, and ri+1 is defined to be the unique page
that is not in ALG’s cache just after servicing the request sequence r1, . . . , ri. In other
words, the adversary always requests the one page that ALG does not have in its cache.
Clearly, I can be made arbitrarily long and ALG has a page fault on each request in I,
hence |I| = costALG(I).

We now show, however, that it is possible to serve every request sequence I with at most
|I|/3 page faults. Specifically, consider an imaginary offline algorithm LFD that knows the
future and always evicts the one page from the cache whose next request is latest. Suppose
that for servicing the ith request, ri, LFD evicts the page p. By the definition of LFD, and

2



since there are 4 pages in all, it must be that all the pages in the cache (except perhaps ri)
must be requested prior to the next request of p. Hence, LFD has a page fault at most once
every 3 requests.

Clearly, it holds that

costOPT (I) ≤ costLFD(I) ≤ |I|
3

=
costALG(I)

3
,

which finishes the proof of the theorem.

3


