Clock Synchronization
Chapter 9

hule Zirich

Swiss Federal Institute of Technalogy Turich

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/1

You Tube Releres Synchronization

'

Rating

Area maturity

Text book

First steps

Practical importance

Mission critical

No apps

Theory appeal

Boooooooring Exciting

OI

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/3

Overview

* Motivation

» Clock Sources & Hardware

» Single-Hop Clock Synchronization

» Clock Synchronization in Networks

* Protocols: RBS, TPSN, FTSP, GTSP
* Theory of Clock Synchronization

» Protocol: PulseSync

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/4

Motivation

Properties of Clock Synchronization Algorithms

» Synchronizing time is essential for many applications
— Coordination of wake-up and sleeping times (energy efficiency)
— TDMA schedules
— Ordering of collected sensor data/events
— Co-operation of multiple sensor nodes
— Estimation of position information (e.g. shooter detection)

» Goals of clock synchronization
— Compensate offset* between clocks
— Compensate drift* between clocks

*terms are explained on following slides

Localization

Duty-
Cycling

» External versus internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time
— to aleader, to an averaged time, or to anything else

» One-shot versus continuous synchronization
— Periodic synchronization required to compensate clock drift

* A-priori versus a-posteriori
— A-posteriori clock synchronization triggered by an event

* Global versus local synchronization (explained later)

» Accuracy versus convergence time, Byzantine nodes, ...

Clock Sources

Clock Sources (2)

» Radio Clock Signal:

— Clock signal from a reference source (atomic clock)
is transmitted over a long wave radio signal

— DCF77 station near Frankfurt, Germany transmits at
77.5 kHz with a transmission range of up to 2000 km

— Accuracy limited by the distance to the sender,
Frankfurt-Zurich is about 1ms.

— Special antenna/receiver hardware required

* Global Positioning System (GPS):

— Satellites continuously transmit own position and
time code

— Line of sight between satellite and receiver required
— Special antenna/receiver hardware required

|

* AC power lines:
— Use the magnetic field radiating from electric AC power lines
— AC power line oscillations are extremely stable
(10 ppm)
— Power efficient, consumes only 58 yW

— Single communication round required to correct
phase offset after initialization

» Sunlight;
— Using a light sensor to measure the length of a day

— Offline algorithm for reconstructing global
timestamps by correlating annual solar patterns TR
(no communication required) 1

T T T T T
Jan2008 M08 Jan2007 Wi2007 Jan 208

Clock Devices in Sensor Nodes

» Structure
— External oscillator with a nominal frequency (e.g. 32 kHz or 7.37 MHz)
— Counter register which is incremented with oscillator pulses
— Works also when CPU is in sleep state
7.37 MHz quartz

BAEEE 32 kHz quartz

X TinyNode
32 kHz quartz

Platform System clock | Crystal oscillator
Mica2 7.37 MHz 32 kHz, 7.37 MHz
TinyNode 584 | 8 MHz 32 kHz

Tmote Sky 8 MHz 32 kHz

Clock Drift

* Accuracy

— Clock drift: random deviation from the nominal rate dependent on power
supply, temperature, etc.

rate
1+e 1 This is a drift of up to
B e S o N 50 ps per second
11 77\ /‘/\ N /\ or 0.18s per hour
N VA ~/ t :

>

— E.g. TinyNodes have a maximum drift of 30-50 ppm at room temperature

afisrham, Tomparalure
921616 % M iy

2003

) 01l
21814 L | 02
G, | i | b

[i | ! 02

azmz b \‘_\‘ ie

)
92110 \
-10

'ﬁ'm: e 1es N a7 e noe e e e s e

Frequency (Hz)
o

e
% 40 6 © S5 10 15 20 25 N B Wy
Temperature {"C)

4]

Sender/Receiver Synchronization

* Round-Trip Time (RTT) based synchronization

Time accor-

B t T dingtoB t
2 3

Request Answer
from A from B

Time accor-
ding to A

At —

#t‘t

* Receiver synchronizes to the sender’s clock
* Propagation delay ¢ and clock offset 8 can be calculated
(’4 _t])_(t3 _tz)
2
0= (t,—(1,+9)-(1, _(ts +9)) _ (t, _t1)+(t3 —1;)
2 2

5=

Messages Experience Jitter in the Delay

* Problem: Jitter in the message delay
Various sources of errors (deterministic and non-deterministic)

0-100 ms 0-500 ms 1-10 ms

" Send [Access [Transmission]
AN

o B Q
: T
Receive | «¢®

0-100 ms

5 —t

» Solution: Timestamping packets at the MAC layer (Maréti et al.)
— Jitter in the message delay is reduced to a few clock ticks

Some Details

» Different radio chips use different paradigms:
— Leftis a CC1000 radio chip which generates an interrupt with each byte.

— Right is a CC2420 radio chip that generates a single interrupt for the
packet after the start frame delimiter is received.

I

{
BYTE 1 BYTE2 BYTE3 BYTE4 5\ S ‘ SFD BYTE 1 ‘ BYTE 2 I BYTE 3 | 5

H t I 1

H I I
by t bty by & bty by t
BYTE_TIME

* In sensor networks propagation

can be ignored (<1us for 300m).
» Still there is quite some variance *
in transmission delay because of =~ .
latencies in interrupt handling
(picture right). Mt w1,

Symmetric Errors

* Many protocols don’t even handle single-hop clock synchronization
well. On the left figures we see the absolute synchronization errors
of TPSN and RBS, respectively. The figure on the right presents a
single-hop synchronization protocol minimizing systematic errors.

» Even perfectly symmetric errors will sum up over multiple hops.

— In a chain of n nodes with a standard deviation o on each hop, the
expected error between head and tail of the chain is in the order of oVn.

Reference-Broadcast Synchronization (RBS)

* Asender synchronizes a set of receivers with one another
» Point of reference: beacon’s arrival time

b=4t+Ss+ A, +F; TR,
4 =t1+SS+AS+PS,B+RB
6’:12 =P, Bzt (R,—Ry)

» Only sensitive to the difference in propagation and reception time

« Time stamping at the interrupt time when a beacon is received

+ After a beacon is sent, all receivers exchange their reception times to
calculate their clock offset

* Post-synchronization possible
+ E.g., least-square linear regression to tackle clock drifts .

« Multi-hop? Q

Time-sync Protocol for Sensor Networks (TPSN)

» Traditional sender-receiver synchronization (RTT-based)
* Initialization phase: Breadth-first-search flooding
— Root node at level 0 sends out a level discovery packet

— Receiving nodes which have not yet an assigned level set their level
to +1 and start a random timer

— After the timer is expired, a new level discovery packet will be sent

— When a new node is deployed, it sends out a level request packet after
a random timeout

[0 YA
o/l\o Why this random timer? 0‘
[e | v

] @

(2
@ (2

Time-sync Protocol for Sensor Networks (TPSN)

» Synchronization phase

— Root node issues a time sync packet which triggers a random timer at
all level 1 nodes

— After the timer is expired, the node asks its parent for synchronization
using a synchronization pulse

— The parent node answers with an acknowledgement

— Thus, the requesting node knows the round trip time and can calculate
its clock offset

— Child nodes receiving a synchronization pulse also start a random timer
themselves to trigger their own synchronization

Time Sync (I)\

[B)
\
Sync pulsg'/ACK / l

Time-sync Protocol for Sensor Networks (TPSN)

L=4+S, A, TP+ R, / .

t,=1,+S,+ A, +P, ,+R, e l N
t

g S S A A Py B R R) [1

2 'O, /

» Time stamping packets at the MAC layer
* In contrast to RBS, the signal propagation time might be negligible
« Authors claim that it is “about two times” better than RBS @ ®

+ Again, clock drifts are taken into account using periodical «_~
synchronization messages

* Problem: What happens in a non-tree topology (e.g. grid)?

— Two neighbors may have bad synchronization? Q

Flooding Time Synchronization Protocol (FTSP)

Best tree for tree-based clock synchronization?

* Each node maintains both a local and a global time

* Global time is synchronized to the local time of a reference node
— Node with the smallest id is elected as the reference node

* Reference time is flooded through the network periodically

T reference node

6 @
AW

d be l, 0

» Timestamping at the MAC Layer is used to compensate for
deterministic message delays

» Compensation for clock drift between synchronization messages

using a linear regression table i

/a
» Finding a good tree for clock synchronization is a tough problem ‘0)
— Spanning tree with small (maximum or average) stretch. &7

« Example: Grid network, with n = m? nodes.

* No matter what tree you use, the maximum
stretch of the spanning tree will always be
at least m (just try on the grid figure right...)

* In general, finding the minimum max
stretch spanning tree is a hard problem,

however approximation algorithms exist
[Emek, Peleg, 2004].

Variants of Clock Synchronization Algorithms

Tree-like Algorithms Distributed Algorithms
e.g. FTSP e.g. GTSP

root

© ()
Ot N g

@®® @,@

Bad local
skew

All nodes consistently

average errors to all
neigbhors

FTSP vs. GTSP: Global Skew

* Network synchronization error (global skew)
— Pair-wise synchronization error between any two nodes in the network

FTSP (avg: 7.7 us) GTSP (avg: 14.0 pys)

H
g

2 2
3 8

a
3

Network Synchronézation Efror (us)
Network Synchronkzation Error (us)

N
8

o

0 5000 10000 15000 20000
Time (s) Time (s)

FTSP vs. GTSP: Local Skew

* Neighbor Synchronization error (local skew)
— Pair-wise synchronization error between neighboring nodes

» Synchronization error between two direct neighbors:

FTSP (avg: 15.0 us) GTSP (avg: 2.8 us)

Nelghbor Synchronization Exror (us)
Neighbor Synchronization Exror (us)

Global vs. Local Time Synchronization

« Common time is essential for many applications:
G\oba\ — Assigning a timestamp to a globally sensed event (e.g. earthquake)

_ooa\ — Precise event localization (e.g. shooter detection, multiplayer games)
LOca\ — TDMA-based MAC layer in wireless networks

ey T

\,Oca\ — Coordination of wake-up and sleeping times (energy efficiency)
| ||

Theory of Clock Synchronization

» Given a communication network
1. Each node equipped with hardware clock with drift
2. Message delays with jitter

worst-case (but constant)

* Goal: Synchronize Clocks (“Logical Clocks”)
» Both global and local synchronization!

Time Must Behave!

» Time (logical clocks) should not be allowed to stand still or jump

. Let’s be more careful (and ambitious):
. Logical clocks should always move forward
+ Sometimes faster, sometimes slower is OK.
* But there should be a minimum and a maximum speed.
* As close to correct time as possible! L

Formal Model

° H.'ardware clock H,(f) = [io,9h(7) T Clock drift e is typically small, e.g.
with clock rate h(t) € [1-¢,1+¢€] e ~10 for a cheap quartz oscillator

- Logical clock L () which increases Logical cI_ocks with rate less t_han 1
at rate at least 1 and at most 3 behave differently (“synchronizer”)

Neglect fixed share of delay,
» Message delays € [0,1] normalize jitter

« Employ a synchronization algorithm
to update the logical clock according H, Time is 152
to hardware clock and

messages from K —

neighbors Time is 140 : Time is 150

Synchronization Algorithms: An Example (“4™”)

* Question: How to update the logical clock Allow 3 = oo
based on the messages from the neighbors?
* Idea: Minimizing the skew to the fastest neighbor

— Set the clock to the maximum clock value received from any neighbor
(if larger than local clock value)

— forward new values immediately

* Optimum global skew of about D

» Poor local property
— First all messages take 1 time unit...
— ...then we have a fast message!

Fastest New time is D+x New timeis D+x skew D!
Hardware

Clock Time is D+x Time is D+x Time is D+x r_H

Clock value: Old clock value: Old clock value: Old clock value: « s
D+x D+x-1 x+1 X Q

Synchronization Algorithms: 4ma’

» The problem of 47 is that the clock is always increased to the
maximum value

» Idea: Allow a constant slack y between the maximum neighbor clock

value and the own clock value
« The algorithm 4"+ sets the local clock value L) to

Li(t) = max(Li(t), max ., Li(t)~y)

— Worst-case clock skew between two neighboring nodes is still
©(D) independent of the choice of y!

 How can we do better?

— Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?

— Idea: Take the clock of all neighbors into account by choosing the
average value? @

Local Skew: Overview of Results

Everybody's expectation,
five years ago (,solved®)

Blocking

Dynamic Networks!
Kappa algorithm [Kuhn et al., SPAA 2009]

[Lenzen et al., FOCS 2008]

Enforcing Clock Skew

N
(8]
o
>
~

2

[
[
P
5

v

\

* Messages between two neighboring nodes may be fast in one
direction and slow in the other, or vice versa.

* A constant skew between neighbors may be ,hidden®.

* In a path, the global skew may be in the order of D/2. Q

Local Skew: Lower Bound (Single-Slide Proof!)
h,=1 _ Li=x h, = 1+¢ . Lt)=x+15/2
AN 7 o~ i Higher
=D ~— 1 ~_ clock
/S I
h,=1 Ly(t) h,=1 T L)

e Add |,/2 skew in |,/(2¢) time, messing with clock rates and messages
e Afterwards: Continue execution for |,/(4(3-1)) time (all h, = 1)

-> Skew reduces by at most |,/4 = at least |,/4 skew remains

- Consider a subpath of length |, = ,-¢/(2(/3-1)) with at least |,/4 skew

> Add |,/2 skew in |,/(2¢) = 1,/(4(5-1)) time => at least 3/4-, skew in subpath
* Repeat this trick (+)4,-%,+%,%,...) log,; ;), D times

Theorem: Q)(log), D) skew between neighbors Q

Local Skew: Upper Bound

* Surprisingly, up to small constants, the Q(log;,), D) lower bound
can be matched with clock rates € [1,0]

* We get the following picture [Lenzen et al., PODC 2009]:

max rate (3 1+e 1+6(e) 1+Ve 2

local skew O(log D) | O(log,,. D) | ©(logy,. D) | ©(log,,, D)

We can have both ... because too large
smooth and clock rates will amplify
accurate clocks! the clock drift e.

» In practice, we usually have 1/e ~ 10* > D. In other words, our initial
intuition of a constant local skew was not entirely wrong! ©

Synchronizing Nodes

= Sending periodic beacon messages to synchronize nodes

Beacon ilnterval B

t @ reference clock

jitter jitter

How accurately can we synchronize two Nodes?

= Message delay jitter affects clock synchronization quality

y(x) = F-x + Ay

T— clock offset

relative clock rate
(estimated)

Beacon interval B Q

Clock Skew between two Nodes

= Lower Bound on the clock skew between two neighbors

Error in the rate estimation:
— Jitter in the message delay
— Beacon interval

— Number of beacons k

J
BkVk

Synchronization error:

-l ~

|”_|i

Beacon interval B Q

Multi-hop Clock Synchronization

= Nodes forward their current estimate of the reference clock
Each synchronization beacon is affected by a random jitter J

@J\DJ@J3®J4@T =@

1 2

= Sum of the jitter grows with the square-root of the distance
stddev(J, + J, + J3 + J, + Js + ... J,) = Voxstddev(J)

Single-hop: Multi-hop:

. J N J\/(_i
U — 1 ~ — ~ —
17—y 7 = |y -y i

Linear Regression (e.g. FTSP)

= FTSP uses linear regression to compensate for clock drift
Jitter is amplified before it is sent to the next hop

y(x) = X + Ay

T— clock offset

relative clock rate

Ay 7,7 (estimated)

Beacon interval B

The PulseSync Protocol

» Send fast synchronization pulses through the network
— Speed-up the initialization phase

— Faster adaptation to changes in temperature or network topology

Beacon time B

)
FTSP %] [
Expected time ® [|
=D-B/2 @ N .
Beacon time B
I : |
o™ m
PulseSync ¢ |
Expected time ® -
= D'tpulse @ - t

t

pulse

The PulseSync Protocol (2)

* Remove self-amplification of synchronization error
— Fast flooding cannot completely eliminate amplification

y(x) = Fx + Ay

T— clock offset

relative clock rate
(estimated)

Ay

FTSP vs. PulseSync FTSP vs. PulseSync

¢ Global Clock Skew

+ Maximum synchronization error between any two nodes Sychnronization Error vs. distance from root node
o0 S 100
| PulseSyn¢™ FTSP PulseSync
- 80
. L 2
3 s
% l:: 150 a} 60
2 2 c il
w © 100 2
g .
E 40) A
£
5000 10000 15000 2000¢ 0 0 000 g |
o Time (€)) 20 +
Synchronization Error FTSP PulseSync het m,—]—”{ ’hﬁ’hm m - é | rh__h I ‘-h" I hhh
o Lttt | chohrheheehehehemmmmmmmn
Average (t>2000s) 23.96 ps 4.44 ps 5 10 15 5 10 15
Maximum (t>2000s) 249 ps 38 us Distance (Hops) Distance (Hops)

Open Problem

* As listed on slide 9/6, clock synchronization has lots of parameters.
Some of them (like local/gradient) clock synchronization have only
started to be understood.

* Local clock synchronization in combination with other parameters
are not understood well, e.g.

— accuracy vs. convergence
— fault-tolerance in case some clocks are misbehaving [Byzantine]
— clock synchronization in dynamic networks

