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Clustering
Chapter 8
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Traffic Monitoring and Routing Planning (CarTel)

• GPS equipped cars for optimal route 
predictions, not necessarily “shortest” 
or “fastest” but also “most likely to get 
me to target by 9am”

• Various other 
applications
e.g. Pothole Patrol
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Rating

• Area maturity

• Practical importance

• Theoretical importance

First steps                                                         Text book

No apps                                                     Mission critical

Not really                                                          Must have
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• Motivation
• (Connected) Dominating Set

• Some Algorithms
– The “Greedy” Algorithm
– The “Tree Growing” Algorithm
– The “Marking” Algorithm
– The “Complicated” Algorithm

• Connectivity Models: UDG, BIG, UBG, …

• More Algorithms
– The “Largest ID” Algorithm
– The “MIS” Algorithm

Overview
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Motivation

• In theory clustering is the answer to dozens of questions in ad hoc 
and sensor networks. It improves almost any algorithm, e.g. in data 
gathering it selects cluster heads which do the work while other 
nodes can save energy by sleeping. Also clustering is related to 
other things, like coloring (which itself is related to TDMA). Here, we 
motivate clustering with routing:

• There are thousands of routing algorithms…
• Q: How good are these routing algorithms?!? Any hard results?
• A: Almost none! Method-of-choice is simulation…

• Flooding is key component of (many) proposed algorithms, 
including most prominent ones (AODV, DSR)

• At least flooding should be efficient
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Finding a Destination by Flooding
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Finding a Destination Efficiently

Ad Hoc and Sensor Networks   – Roger Wattenhofer   – 8/8Ad Hoc and Sensor Networks   – Roger Wattenhofer   –

Backbone

• Idea: Some nodes become backbone nodes (gateways). Each node 
can access and be accessed by at least one backbone node. 

• Routing:
1. If source is not a

gateway, transmit
message to gateway

2. Gateway acts as
proxy source and
routes message on
backbone to gateway
of destination.

3. Transmission gateway
to destination.
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(Connected) Dominating Set

• A Dominating Set DS is a subset of nodes such that each node is 
either in DS or has a neighbor in DS.

• A Connected Dominating Set CDS is a connected DS, that is, there 
is a path between any two nodes in CDS that does not use nodes 
that are not in CDS.

• A CDS is a good choice
for a backbone. 

• It might be favorable to
have few nodes in the 
CDS. This is known as the
Minimum CDS problem
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Formal Problem Definition: M(C)DS

• Input: We are given an (arbitrary) undirected graph. 

• Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

• Problems
– M(C)DS is NP-hard
– Find a (C)DS that is “close” to minimum (approximation)
– The solution must be local (global solutions are impractical for 

dynamic networks) – topology of graph “far away” should not 
influence decision which nodes belong to (C)DS
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Greedy Algorithm for Dominating Sets

• Idea: Greedily choose “good” nodes into the dominating set.

• Black nodes are in the DS
• Grey nodes are neighbors of nodes in the DS
• White nodes are not yet dominated, initially all nodes are white.

• Algorithm: Greedily choose a node that colors most white nodes.

• One can show that this gives a log � approximation, if � is the 
maximum node degree of the graph.
– The proof is similar to the “Tree Growing” proof on the following slides
– It was shown that there is no polynomial algorithm with better 

performance unless P¼¼NP.
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CDS: The “too simple tree growing” algorithm

• Idea: start with the root, and then greedily choose a neighbor of the 
tree that dominates as many as possible new nodes.

• Black nodes are in the CDS.
• Grey nodes are neighbors of nodes in the CDS.
• White nodes are not yet dominated, initially all nodes are white.

• Start: Choose a node with maximum degree, and make it the root of 
the CDS, that is, color it black (and its white neighbors grey).

• Step: Choose a grey node with a maximum number of white 
neighbors and color it black (and its white neighbors grey).



Example of the “too simple tree growing” algorithm

Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

tree growing: starting                    …                         Minimum CDS

u u u

v v v
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Tree Growing Algorithm

• Idea: Don’t scan one but two nodes!

• Alternative step: Choose a grey node and its white neighbor node 
with a maximum sum of white neighbors and color both black (and 
their white neighbors grey).
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Analysis of the tree growing algorithm

• Theorem: The tree growing algorithm finds a connected set of size 
|CDS| · 2(1+H(�)) ¢ |DSOPT|. 
– DSOPT is a (not connected) minimum dominating set
– � is the maximum node degree in the graph
– H is the harmonic function with H(n) ¼ log n+0.7
– In other words, the connected dominating set of the tree growing algorithm 

is at most a O(log �) factor worse than an optimum minimum dominating 
set (which is NP-hard to compute).

– With a lower bound argument (reduction to set cover) one can show that a 
better approximation factor is impossible, unless P¼¼NP.
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Proof Sketch

• The proof is done with amortized analysis. 

• Let Su be the set of nodes dominated by u 2 DSOPT, or u itself. If a 
node is dominated by more than one node in DSOPT, we put it in any 
one of the sets.

• Each node we color black costs 1. However, we share this cost and 
charge the nodes in the graph for each node we color black. In 
particular we charge all the newly colored grey nodes. Since we 
color a node grey at most once, it is charged at most once. Coloring 
2 nodes black will turn °° nodes from white to grey, hence each of 
the ° nodes will be charged cost 2/°. We will show that the total 
charge on the vertices in Su is at most 2(1+H(�)), for any u.
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Charge on Su

• Initially |Su| = u0 (in the example picture u0 = 9).
• Whenever we color some nodes of Su, we call this a step.
• The number of white nodes in Su after step i is ui.
• After step k there are no more white nodes in Su.

• In the first step u0 – u1 nodes are colored 
(grey or black). Each vertex gets a charge of 
at most 2/(u0 – u1).

• After the first step, node u becomes eligible to be colored 
black (as part of a pair with one of the grey nodes in Su). If u 
is not chosen in step i (with a potential to paint ui nodes grey), 
then we have found a better (pair of) node. That is, the charge 
to any of the new grey nodes in step i in Su is at most 2/ui. 

u

Adding up the charges in Su
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Discussion of the tree growing algorithm

• We have an extremely simple algorithm that is asymptotically 
optimal unless P¼¼NP. And even the constants are small.

• Are we happy?

• Not really. How do we implement this algorithm in a real (dynamic) 
network? How do we figure out where the best grey/white pair of 
nodes is? How slow is this algorithm in a distributed setting?

• We need a fully distributed algorithm. Nodes should only consider 
local information. 
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The Marking Algorithm

• Idea: The connected dominating set CDS consists of the nodes that 
have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)
2. Each node u transmits N(u), and receives N(v) from all its neighbors
3. If node u has two neighbors v,w and w is not in N(v) (and since the 

graph is undirected v is not in N(w)), then u marks itself being in the 
set CDS.

+ Completely local; only exchange N(u) with all neighbors
+ Each node sends only 1 message, and receives at most �
• Is the marking algorithm really producing a 

connected dominating set? How good is the set?
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Example for the Marking Algorithm

[J. Wu]
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Correctness of Marking Algorithm

• We assume that the input graph G is connected but not a clique. 

• Note: If G was a clique then constructing a CDS would not make 
sense. Note that in a clique (complete graph), no node would get 
marked.

• We show: 

The set of marked nodes CDS is
a) a dominating set
b) connected
c) a shortest path in G between two nodes of the CDS is in CDS
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Proof of a) dominating set

• Proof: Assume for the sake of contradiction that node u is a node 
that is not in the dominating set, and also not dominated. We study 
the nodes in N+(u) := u [ N(u):
– If a node v 2 N(u) has a neighbor w outside N(u), then node v would be 

in the dominating set (since u and w are not neighboring).
– In other words, nodes in N+(u) only have neighbors in N+(u). If any two 

nodes v,w in N(u) are not neighboring, node u itself would be in the 
dominating set. In other words, our graph is the complete graph (clique) 
N+(u).  We precluded this in the assumptions, therefore we have a 
contradiction.
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Proof of b) connected, c) shortest path in CDS

• Proof: Let p be any shortest path between the two nodes u and v, 
with u,v 2 CDS.

• Assume for the sake of contradiction that there is a node w on this 
shortest path that is not in the connected dominating set.

• Then the two neighbors of w must be connected, which gives us a 
shorter path. This is a contradiction.

w
vu
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Improved Marking Algorithm

• If neighbors with larger ID are connected and cover all other 
neighbors, then don’t join CDS, else join CDS

5

6

1

9

4

7

2

3

8

Correctness of Improved Marking Algorithm

• Theorem: Algorithm computes a CDS S

• Proof (by induction of node IDs):
– assume that initially all nodes are in S
– look at nodes u in increasing ID order and remove from S if higher-ID 

neighbors of u are connected
– S remains a DS at all times: (assume that u is removed from S)

– S remains connected:
replace connection v-u-v’ by v-n1,…,nk-v’ (ni: higher-ID neighbors of u)

u

higher-ID
neighbors

lower-ID
neigbors

higher-ID neighbors
cover lower-ID neighbors

Quality of the (Improved) Marking Algorithm

• Given an Euclidean chain of n homogeneous nodes
• The transmission range of each node is such that it is connected to 

the k left and right neighbors, the IDs of the nodes are ascending.

• An optimal algorithm (and also the tree growing algorithm) puts 
every kth node into the CDS. Thus |CDSOPT| ¼¼ n/k; with k = n/c for 
some positive constant c we have |CDSOPT| = O(1).

• The marking algorithm (also the improved version) does mark all the 
nodes (except the k leftmost and/or rightmost ones). Thus 
|CDSMarking| = n – k; with k = n/c we have |CDSMarking| = �(n).

• This is as bad as not doing anything!
– Is there at all a fast distributed way to compute a dominating set?

This problem is tough…

• … however, there are some complicated algorithms that achieve 
non-trivial results, e.g. in k rounds of communications

[Kuhn et al., 2006]



Better and faster algorithm

• Assume that graph is a 
unit disk graph (UDG)

• Assume that nodes 
know their positions
(GPS)

1

u

v
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Then…
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Grid Algorithm

1. Beacon your position

2. If, in your virtual grid cell, you are the node closest to the center of 
the cell, then join the DS, else do not join.

3. That’s it.

• 1 transmission per node, O(1) approximation.

• If you have mobility/dynamics, then simply “loop” through algorithm, 
as fast as your application/mobility wants you to.
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The model determines the distributed
complexity of clustering

Comparison

Complicated algorithm 

• Algorithm computes DS

• k2+O(1) transmissions/node
• O(�O(1)/k log �) approximation

• General graph
• No position information

Grid algorithm

• Algorithm computes DS

• 1 transmission/node
• O(1) approximation

• Unit disk graph (UDG)
• Position information (GPS)
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Let’s talk about models…

• General Graph

• Captures obstacles
• Captures directional radios
• Often too pessimistic

• UDG & GPS

• UDG is not realistic
• GPS not always available

– Indoors
• 2D � 3D?
• Often too optimistic

too pessimistic too optimistic

Let‘s look at models in 
between these extremes!
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Why are models needed?

• Formal models help us understanding a problem

• Formal proofs of correctness and efficiency
• Common basis to compare results
• Unfortunately, for ad hoc and sensor networks, a myriad of models 

exist, most of them make sense in some way or another. On the 
next few slides we look at a few selected models
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Unit Disk Graph (UDG)

• Classic computational geometry model, special case of disk graphs

• All nodes are points in the plane, 
two nodes are connected iff (if and 
only if) their distance is at most 1, 
that is {u,v} 2 E , |u,v| · 1

+ Very simple, allows for strong analysis
– Not realistic: “If you gave me $100 for each paper written with the 

unit disk assumption, I still could not buy a radio that is unit disk!”
– Particularly bad in obstructed environments (walls, hills, etc.)
• Natural extension: 3D UDG
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Quasi Unit Disk Graph (QUDG)

• Two radii, 1 and ½, with ½ · 1
• |u,v| · ½� {u,v} 2 E
• 1 < |u,v| � {u,v} 2 E
• ½ < |u,v| · 1 � it depends!

• … on an adversary
• … on probabilistic model
• … 

+ Simple, analyzable
+ More realistic than UDG
– Still bad in obstructed 

environments (walls, hills, etc.)
• Natural extension: 3D QUDG
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Bounded Independence Graph (BIG)

• How realistic is a QUDG?
– u and v can be close but not adjacent
– model requires very small ½

in obstructed environments (walls)

• However: in practice, neighbors are often also neighboring

• Solution: BIG Model
– Bounded independence graph
– Size of any independent set grows 

polynomially with hop distance r
– e.g., f(r) = O(r2) or O(r3)
– A set S of nodes is an independent set, if 

there is no edge between any two nodes in S.
– BIG model also known as bounded-growth

– Unfortunately, the term bounded-growth is ambiguous

Unit Ball Graph (UBG)

• 9 metric (V,d) with constant doubling dimension.

• Metric: Each edge has a distance d, with 
1. d(u,v) ¸ 0 (non-negativity)
2. d(u,v) = 0 iff u = v (identity of indiscernibles)
3. d(u,v) = d(v,u) (symmetry)
4. d(u,w) · d(u,v) + d(v,w) (triangle inequality)

• Doubling dimension: log(#balls of radius r/2 to cover ball of radius r)
– Constant: you only need a constant number of balls of half the radius

• Connectivity graph is same as UDG:
such that:  d(u,v) · 1 : (u,v) 2 E
such that: d(u,v) > 1  : (u,v) 2 E

Connectivity Models: Overview

too pessimistic too optimistic

General
Graph

UDG

Quasi
UDG

Bounded 
Independence

Unit Ball
Graph
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Models are related

QUDG

UBG

BIG

GG

UDG

• BIG is special case of general graph, BIG μ GG

• UBG μ BIG because the size of the independent 
sets of any UBG is polynomially bounded

• QUDG(constant ½) μ UBG

• QUDG(½=1) = UDG
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The “Largest-ID” Algorithm

• All nodes have unique IDs, chosen at random.

• Algorithm for each node:
1. Send ID to all neighbors
2. Tell node with largest ID in neighborhood that it has to join the DS

• Algorithm computes a DS in 2 rounds (very local!)

4

6
7
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“Largest ID” Algorithm, Analysis 1

• To simplify analysis: assume graph is UDG
(same analysis works for UBG based on doubling metric)

• We look at a disk S of diameter 1:
S

Diameter: 1

Nodes inside S have
distance at most 1.
! they form a clique

How many nodes in S
are selected for the DS?

S

“Largest ID” Algorithm, Analysis 2

1 11

• Nodes which select nodes in S are in disk of radius 3/2 which
can be covered by S and 20 other disks  Si of diameter 1
(UBG: number of small disks depends on doubling dimension)

“Largest ID” Algorithm: Analysis 3

• How many nodes in S are chosen by nodes in a disk Si?

• A node u2S is only chosen by a node in Si if 
(all nodes in Si see each other).

• The probability for this is: 

• Therefore, the expected number of nodes in S chosen by nodes in 
Si is at most:

Because at most |Si| nodes in Si can choose
nodes in S and because of linearity of expectation.



Ad Hoc and Sensor Networks   – Roger Wattenhofer   – 8/45Ad Hoc and Sensor Networks   – Roger Wattenhofer   –

“Largest ID” Algorithm, Analysis 4

• From |S| · n and |Si| · n, it follows that

• Hence, in expectation the DS contains at most              nodes
per disk with diameter 1.

• An optimal algorithm needs to choose at least 1 node in the disk 
with radius 1 around any node.

• This disk can be covered by a constant (9) number of disks of 
diameter 1.

• The algorithm chooses at most               times more disks than an 
optimal one

           

            

“Largest ID” Algorithm, Remarks

• For typical settings, the “Largest ID” algorithm produces very good
dominating sets (also for non-UDGs)

• There are UDGs where the “Largest ID” algorithm computes an
-approximation (analysis is tight).

complete
sub-graph

complete
sub-graph

nodes

Optimal DS: size 2

“Largest ID” algorithm:

• bottom nodes choose 
top nodes with 
probability¼1/2

• 1 node every 2nd group
nodes
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Maximal Independent Set (MIS)

• A Maximal Independent Set (MIS) is a non-extendable set of pair-
wise non-adjacent nodes:

• An MIS is also a dominating set:
– assume that there is a node v which is not dominated
– v�MIS, (u,v)�E ! u�MIS
– add v to MIS

• In contrast: A Maximum Independent Set (MaxIS) 
is an independent set of maximum cardinality.
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Computing a MIS

• Lemma: On BIG: |MIS| ·· O(1)¢|DSOPT|

• Proof:
1. Assign every MIS node to an adjacent node of DSOPT

2. u2DSOPT has at most f(1) neighbors v2MIS
3. At most f(1) MIS nodes assigned to every node of DSOPT

� |MIS| · f(1)¢|DSOPT|

• Time to compute MIS on BIGs: O(log*n) [Schneider et al., 2008]

– The function „log-star“ says how often you need to take the logarithm of 
a value to end up with 1 or less. Even if n was the number of atoms in 
the universe, we have log*n = 5.
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MIS (DS) � CDS

• MIS gives a dominating set.
• But it is not connected.

• Connect any two MIS nodes 
which can be connected by one 
additional node.

• Connect unconnected MIS 
nodes which can be connected 
by two additional nodes.

• This gives a CDS!
• #2-hop connectors · f(2)¢|MIS|
• #3-hop connectors · 2f(3)¢|MIS|
• |CDS| = O(|MIS|)

• Similarly, one can compute other
structures, e.g. coloring, very
fast!
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Open problem

• This chapter got a lot of attention from the research community in 
the last few years, and it made remarkable progress. Many 
problems open just a few years ago are solved now.

• However, some problems are still open. The classic open problem 
in this area is MIS for general graphs. A randomized algorithm [Luby

1985, and others] constructs a MIS in time O(log n). It is unknown 
whether this can be improved, or matched by a deterministic 
algorithm.

• Another nice open question is what can be achieved in constant 
time? For instance, even though we know that an MIS (or CDS or 
¢-coloring) can be computed in O(log*n) time on a UDG [Schneider 

et al., 2008], it is unclear what can be done in constant time!


