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Inventory Tracking (Cargo Tracking)

+Find Intrusions

| T ) © |
» Current tracking ; ‘

systems require line-
of-sight to satellite.

« Count and locate
containers

e« Search containers for
specific item

 Monitor accelerometer
for sudden motion

* Monitor light sensor for
unauthorized entry into
container
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Rating

Topology Contro

inMireless Ad Hoc
and Sensor Networks

Area maturity

First steps

* Practical importance

No apps Mission critical

 Theoretical importance

Boooooooring Exciting
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Overview — Topology Control

* Proximity Graphs: Gabriel Graph et al.

» Practical Topology Control: XTC

 |nterference



Topology Control

» Drop long-range neighbors: Reduces interference and energy!
« But still stay connected (or even spanner)
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Topology Control as a Trade-Off

Network Connectivity Conserve Energy
Spanner Property Reduce Interference
Sparse Graph, Low Degree
Planarity 7

Symmetric Links
Less Dynamics
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Spanners

e Let the distance of a path from node u to node v, denoted as d(u,v), be

the sum of the Euclidean distances of the links of the shortest path.
— Writing d(u,v)? is short for taking each link distance to the power of p, again
summing up over all links.

e Basicidea:Sis spanner of graph G if Sis a subgraph of G that has certain
properties for all pairs of nodes, e.g.

— Geometric spanner: dg(u,v) < c-d¢(u,v)

— Power spanner: d(u,v)* < c-dg(u,v)?, for path loss exponent a

— Weak spanner: path of S from u to v within disk of diameter c-d(u,v)
— Hop spanner: d¢(u,v)° < c-dg(u,v)°

— Additive hop spanner: dg(u,v)° < dg(u,v)° + ¢

— (a, B) spanner: dy(u,v)? < a-dg(u,v)°+ B

— In all cases the stretch can be defined as maximum ratio d./d.



Gabriel Graph

« Letdisk(u,v) be a disk with diameter (u,v)
that is determined by the two points u,v.

« The Gabriel Graph GG(V) is defined
as an undirected graph (with E being
a set of undirected edges). There is an
edge between two nodes u,v iff the

disk(u,Vv) including boundary contains no
other points.

* As we will see the Gabriel Graph
has interesting properties.
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Delaunay Triangulation

"4
« Let disk(u,v,w) be a disk defined by
the three points u,v,w. \
« The Delaunay Triangulation (Graph) i
DT(V) is defined as an undirected ) 4 W

graph (with E being a set of undirected
edges). There is a triangle of edges
between three nodes u,v,w iff the
disk(u,v,w) contains no other points.

 The Delaunay Triangulation is the
dual of the Voronoi diagram, and
widely used in various CS areas;
the DT is planar; the distance of a h%
path (s,...,t) on the DT is within a TN < LA
constant factor of the s-t distance.
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Other planar graphs

» Relative Neighborhood Graph RNG(V)

— An edge e = (u,v) is in the RNG(V) iff
there is no node w in the “lune” of (u,v),
i.e., no noe with with (u,w) < (u,v) and
(V,w) < (u,v).

e Minimum Spanning Tree MST(V)

— A subset of E of G of minimum weight
which forms a tree on V.




Properties of planar graphs

e Theorem 1:
MST C RNG C GG C DT

« Corollary:
Since the MST is connected and the DT is planar, all the graphs in
Theorem 1 are connected and planar.

 Theorem 2:
The Gabriel Graph is a power spanner (for path loss exponent o > 2).
Sois GG N UDG.

 Remaining issue: either high degree (RNG and up), and/or no
spanner (RNG and down). There is an extensive and ongoing search
for “Swiss Army Knife” topology control algorithms.



Overview Proximity Graphs

* [B-Skeleton
— Disk diameters are B-d(u,v), going through u resp. v
— Generalizing GG (B = 1) and RNG (B = 2)

* Yao-Graph
— Each node partitions directions in

k cones and then connects to the
closest node in each cone

 Cone-Based Graph

— Dynamic version of the Yao
Graph. Neighbors are visited
in order of their distance,
and used only if they cover
not yet covered angle




Lightweight Topology Control

« Topology Control commonly assumes that the node positions are
Known.

as
What if we do not have access o%
to position information? @



XTC: Lightweight Topology Control without Geometry

Each node produces
“ranking” of neighbors.
« Examples
— Distance (closest)
— Energy (lowest)
— Link quality (best)
— Must be symmetric!
* Not necessarily depending
on explicit positions
 Nodes exchange rankings
with neighbors



XTC Algorithm (Part 2)

« Each node locally goes
through all neighbors in
order of their ranking

« If the candidate (current
neighbor) ranks any of
your already processed
neighbors higher than
yourself, then you do not
need to connect to the
candidate.

/)




XTC Analysis (Part 1)

« Symmetry: A node u wants a node v as a neighbor if and only if v
wants u.

In node u's neighbor
* Proof: list, w is better than v

— Assume 1)u—>vand 2) u <« v

— Assumption 2) = dw: (i) w <, u and (ii)) w <, v

N J
Y

Contradicts Assumption 1)




XTC Analysis (Part 1)

« Symmetry: A node u wants a node v as a neighbor if and only if v
wants u.

« Connectivity: If two nodes are connected originally, they will stay so
(provided that rankings are based on symmetric link-weights).

 If the ranking is energy or link quality based, then XTC will choose a
topology that routes around walls and obstacles.

e
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XTC Analysis (Part 2)

« If the given graph is a Unit Disk Graph (no obstacles, nodes
homogeneous, but not necessarily uniformly distributed), then ...

« The degree of each node is at most 6.
 The topology is planar.
 The graph is a subgraph of the RNG.

« Relative Neighborhood Graph RNG(V):
— An edge e = (u,v) is in the RNG(V) iff
there is no node w with (u,w) < (u,v)
and (v,w) < (u,v).




XTC Average-Case

*

XTC

Unit Disk Graph



XTC Average-Case (Degrees)
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XTC Average-Case (Stretch Factor)
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Implementing XTC, e.g. BTnodes v3




Implementing XTC, e.g. on mica2 motes

 ldea:

Transmission Failures [ %]

XTC chooses the reliable links

The quality measure is a moving average of the received packet ratio
Source routing: route discovery (flooding) over these reliable links only
(black: using all links, grey: with XTC)
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Topology Control as a Trade-Off

Network Connectivity Conserve Energy

Spanner Property Reduce Interference
Sparse Graph, Low Degree
Planarity

Symmetric Links

Less Dynamics
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What is Interference?

* Problem statement

— We want to minimize maximum interference @
— At the same time topology must be connected or spanner
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Low Node Degree Topology Control?

Low node degree does not necessarily imply low interference:

= Very low node degree
but huge interference




Let’s Study the Following Topology!

...from a worst-case perspective
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Topology Control Algorithms Produce...

« All known topology control algorithms (with symmetric edges)
include the nearest neighbor forest as a subgraph and produce
something like this:

 The interference of this
graph is Q(n)!



But Interference...

» Interference does not need to be high...

« This topology has interference O(1)!!




Link-based Interference Model
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Link-based Interference Model

* LIFE (Low Interference Forest Establisher)

— Preserves Graph Connectivity
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Average-Case Interference: Preserve Connectivity

Interference
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Node-based Interference Model ST

Already 1-dimensional node distributions seem to yield inhefe_ntly
high interference...

Connectlng linearly results \
" /in interference \O(n)
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..but the exponential node chain can be connected in a
better way



Node-based Interference Model

« Already 1-dimensional node distributions seem to yield inherently
high interference...

Connecting linearly results
\ /in interference O(n)
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« ...but the exponential node chain can be connected in a
better way
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Node-based Interference Model

« Arbitrary distributed nodes in one dimension

— Approximation algorithm with approximation ratio in O(3/n )

* Two-dimensional node distributions
— Simple randomized algorithm resulting in interference O(y/nlogn)
— Can be improved to O(Vn)



Open problem

* On the theory side there are quite a few open problems. Even the
simplest questions of the node-based interference model are open:

« We are given n nodes (points) in the plane, in arbitrary (worst-case)
position. You must connect the nodes by a spanning tree. The
neighbors of a node are the direct neighbors in the spanning tree.
Now draw a circle around each node, centered at the node, with the
radius being the minimal radius such that all the nodes’ neighbors
are included in the circle. The interference of a node u is defined as
the number of circles that include the node u. The interference of
the graph is the maximum node interference. We are interested to
construct the spanning tree in a way that minimizes the interference.
Many questions are open: Is this problem in P, or is it NP-complete?
Is there a good approximation algorithm? Etc.



