
Ad Hoc and Sensor Networks – Philipp Sommer 1

TinyOS Lab Exercise
Introduction to TinyOS 2

Ad Hoc and Sensor Networks – Philipp Sommer 2

TinyOS Lab Exercise in Ad Hoc and Sensor Networks

• Sensor network programming in a nutshell
– Read ‘Getting started with TinyOS’ (at home)

– Solve two Lab-style exercises on real hardware
– Teams of two to three students are ideal

– One lab working place is available in ETL F29

– Reservation system on the course website

– Expected time needed for all tasks: 3-4 hours

Ad Hoc and Sensor Networks – Philipp Sommer 3

Wireless Sensor Nodes

• Shockfish TinyNode
– Slow CPU

– 8 MHz Texas Instruments MSP430 microcontroller

– Little memory
– 10 KByte RAM, 48 KByte ROM, 512 Kbyte external flash

– Short-range radio
– 868 MHz Xemics XE1205 ultra-low power wireless transceiver

– Light sensor, temperature and humidity sensors

TinyNode 584Extension Board

+

Ad Hoc and Sensor Networks – Philipp Sommer 4

Exercise 1

• Exchange of a sensor data
– Two sensor nodes are used for this task

– One node periodically samples its light sensor and broadcasts the sensor
reading over its radio

– The other node listens for radio messages and signals if it is getting brighter or
darker
– Brighter → The green LED of the receiver is set

– Darker → The red LED of the receiver is set

– No significant change → The yellow LED is set

Light sensor

value = 520

Ad Hoc and Sensor Networks – Philipp Sommer 5

Exercise 2

• Optical Communication using Morse Codes

Infrared LED

Infrared Photodiode

ReceiverSender

A

on off on off

on off on offoff on of

A

A

A

To do

Ad Hoc and Sensor Networks – Philipp Sommer 6

TinyOS

• TinyOS is an operating system for sensor nodes
– Open source project with a strong academic background

– Hardware drivers, libraries, tools, compiler

• TinyOS applications are written in nesC
– C dialect with extra features

– nesC compiler converts your application into plain C code

http://www.tinyos.net

Ad Hoc and Sensor Networks – Philipp Sommer 7

Why using a new Operating System?

• Measure real-world phenomena
Event-driven architecture

• Resource Contraints
Hurry up and sleep!

• Adapt to changing technologies
Modularity & re-use

• Applications spread over many small nodes
Communication is fundamental

• Inaccessible location, critical operation
Robustness

PermaSense Project
Pictures by
Jan Beutel

Ad Hoc and Sensor Networks – Philipp Sommer 8

NesC/TinyOS Programming Model

• Programs are built out of components

• Two types of components:
Modules: Implement program logic

Configurations: Wire components together

• Components use and provide interfaces

• Components are wired together by connecting
interface users with interface providers

Interfaces are
bidirectional

Ad Hoc and Sensor Networks – Philipp Sommer 9

Programming Model

• Interfaces contain definitions of
• Commands
• Events

• Components implement the event handlers
• they use and the commands they provide

uses
pr

ov
id

es can call commands,
must implement event handlers

can signal events,
must implement commands

Ad Hoc and Sensor Networks – Philipp Sommer 10

Concurrency Model

• Coarse-grained concurrency only
Implemented via tasks

• Tasks are executed sequentially by the TinyOS scheduler
no threads
Atomic with respect to other tasks (single threaded)
Longer background processing jobs

• Events (interrupts)
Time critical
Preempt tasks
Short duration (hand off computation to tasks if necessary)

SSSS

watch out for
data races

Ad Hoc and Sensor Networks – Philipp Sommer 11

Memory Model

10 kB

• Static memory allocation
No heap (malloc)
No function pointers

• Global variables
One namespace per component

• Local variables
Declared within a function
Saved on the stack

• Conserve memory
• Use pointers, don‘t copy buffers

bye-bye complex
data structures

Ad Hoc and Sensor Networks – Philipp Sommer 12

nesC – Hello World

module BlinkC {
uses interface Timer<TMilli>

as BlinkTimer;
uses interface Leds;
uses interface Boot;

}
implementation{
event void Boot.booted() {
call BlinkTimer.startPeriodic(1000);

}
event void BlinkTimer.fired() {
call Leds.led0Toggle();

}
}

• Blink the red LED every
• second

• On boot start a 1 second timer

• On timer fire (countdown at 0)
Toggle the state of the red LED
Reset the timer to 1 second

interface Boot{
event void booted();

}

interface Timer<precision_tag> {

event void fired();

command void startPeriodic(…);
command void startOneShot(…);
command void stop();
…

}

Ad Hoc and Sensor Networks – Philipp Sommer 13

configuration BlinkAppC{
}

implementation {

components MainC, BlinkC,
LedsC;
components new TimerMilliC()

as Timer0;

BlinkC.Boot -> MainC.Boot;

BlinkC.BlinkTimer -> Timer0;
BlinkC.Leds -> LedsC.Leds;

}

nesC – Hello World

module BlinkC {
uses interface Timer<TMilli>

as BlinkTimer;
uses interface Leds;
uses interface Boot;

}
implementation {
event void Boot.booted() {
call BlinkTimer.startPeriodic(1000);

}
event void BlinkTimer.fired() {
call Leds.led0Toggle();

}

}

Ad Hoc and Sensor Networks – Philipp Sommer 14

Sounds difficult?

• Code skeleton is provided for both exercises
– Only a few line of codes are missing (your task)

• TinyOS Eclipse IDE will make your life easier (http://tos-ide.ethz.ch)
– Error detection, Syntax highlighting, Code completion

– One click compiling & flashing

Ad Hoc and Sensor Networks – Philipp Sommer 15

Final Remarks

• Code skeletons for both applications are provided on the lab PC. All
software required during the lab is already pre-installed.

• The lab work place is in the ETL building (ETL F29).
Keys must be fetched in our office ETZ G64.1 when your lab slot starts.

Register for your lab time slot on the course website

Ad Hoc and Sensor Networks – Philipp Sommer 16

The End

• Thanks to Pascal von Rickenbach & Nicolas Burri for many of the slides

