TinyOS Lab Exercise

Introduction to TinyOS 2

Eidgendssiache Technische Hochachule Zirich
Swiss Federal Institute ofT:l:hn-ulugr Zurich

TinyOS Lab Exercise in Ad Hoc and Sensor Networks

e Sensor network programming in a nutshell
— Read ‘Getting started with TinyOS’ (at home)
— Solve two Lab-style exercises on real hardware
— Teams of two to three students are ideal

— One lab working place is available in ETL F29
— Reservation system on the course website

— Expected time needed for all tasks: 3-4 hours

Wireless Sensor Nodes

e Shockfish TinyNode
— Slow CPU
— 8 MHz Texas Instruments MSP430 microcontroller

— Little memory
— 10 KByte RAM, 48 KByte ROM, 512 Kbyte external flash

— Short-range radio
— 868 MHz Xemics XE1205 ultra-low power wireless transceiver

— Light sensor, temperature and humidity sensors

Extension Board TinyNode 584

Exercise 1

e Exchange of a sensor data
— Two sensor nodes are used for this task

— One node periodically samples its light sensor and broadcasts the sensor
reading over its radio

— The other node listens for radio messages and signals if it is getting brighter or
darker
— Brighter - The green LED of the receiver is set
— Darker = The red LED of the receiver is set
— No significant change - The yellow LED is set

Light sensor

value = 20

e il
og
oop
oooo-
oopo:
oog
oooo:
oooo-
ooog:
ooof
ooog
goo
ooot

Exercise 2

e Optical Communication using Morse Codes

on off on off

A

Infrared LED

Sender Receiver

A A

2\ -

on off on off

TinyOS

e TinyOS is an operating system for sensor nodes
— Open source project with a strong academic background
— Hardware drivers, libraries, tools, compiler

e TinyOS applications are written in nesC
— Cdialect with extra features
— nesC compiler converts your application into plain C code

http://www.tinyos.net

TiNny

Why using a new Operating System?

* Measure real-world phenomena

— Event-driven architecture

PermaSense Project
Pictures by
Jan Beutel

e Resource Contraints
— Hurry up and sleep!

* Adapt to changing technologies
— Modularity & re-use

* Applications spread over many small nodes
— Communication is fundamental

* Inaccessible location, critical operation
— Robustness

Sensor node mstallatloﬁ:s targeting 3 years
unattended lifetime

NesC/TinyOS Programming Model

e Programs are built out of components

e Two types of components:
— Modules: Implement program logic
— Configurations: Wire components together

Interfaces are
e Components use and provide interfaces bidirectional

e Components are wired together by connecting &
interface users with interface providers | OmﬂanemB

Programming Model

* Interfaces contain definitions of
e Commands
* Events

* Components implement the event handlers
they use and the commands they provide

can signal events,
must implement commands

sosn

can call commands,
must implement event handlers

provides

COmpONQnt B

Concurrency Model

e Coarse-grained concurrency only
— Implemented via tasks

G m

* Tasks are executed sequentially by the TinyOS scheduler
— no threads
— Atomic with respect to other tasks (single threaded)
— Longer background processing jobs

watch out for

* Events (interrupts) data races

— Time critical
— Preempt tasks
— Short duration (hand off computation to tasks if necessary)

Memory Model

bye-bye complex

e Static memory allocation
data structures

— No heap (malloc)
— No function pointers

* Global variables
— One namespace per component

e Local variables
— Declared within a function
— Saved on the stack

« Conserve memory
« Use pointers, don‘t copy buffers

Stack

1

1

=
&'n
57

efixir

Global

> 10 kB

nesC — Hello World

N]?llnkc { . o Blink the red LED every
uses interface Timer<TMilli>
o second
as BlinkTimer;
uses 1nterface Leds;
uses interface Boot; * On boot start a 1 second timer
}
implementation | * On timer fire (countdown at 0)
event void Boot.booted () { — Toggle the §tate of the red LED
call BlinkTimer.startPeriodic (1000); — Reset the timer to 1 second
}

event void BlinkTimer.fired() { |interface Timer<precision tag> ({
call lLeds.led0Toggle();
} event void fired{();

command void startPeriodic(..);

command void startOneShot (..);
command void stop();

nesC — Hello World

configuration BlinkAppC{ module BlinkC {
} uses 1nterface Timer<IMilli>
as BlinkTimer;
implementation { uses interface Leds;
uses 1nterface Boot;
camponents MainC, BlinkC, ¥
LedsC; implementation {
camponents new TimerMi11iC() event void Boot.booted () {
as Timer0; call BlinkTimer.startPeriodic (1000);
}
BlinkC.Boot —> MainC.Boot; event void BlinkTimer.fired() {
call Leds.led0Toggle() ;
BlinkC.BlinkTimer —-> TimerO; }

BlinkC.lLeds —-> LedsC.lLeds;

Sounds difficult?

e Code skeleton is provided for both exercises

— Only a few line of codes are missing (your task)

e TinyOS Eclipse IDE will make your life easier (http://tos-ide.ethz.ch)
— Error detection, Syntax highlighting, Code completion

— One click compiling & flashing

Tiny OS - MyBlink/src/BlinkAppC.nc - Eclipse SDK

Eile Edit Navigate Search Project Source Bun Window Help
ot @ Qe | - W G b = (B &=
[# Package Explor & - = 8| =0 BlinkAppC.nc &2 - = O | £ outline 5 el
=] a
E‘E 40 configuration BlinkAppC —{f_
b ;= Broadcast 41 { = @ BlinkAppC (=
= 52 MyBlink 42 i= Specification
&= My . 42 implementation L‘ B
P (= bin 24 { = [2 Implementation
~ Gesrc 45 components MainC, BlinkC, LedsC; < & Components
Rl RARp e 46 components new TimerMillic() as TimerO; > & MainC
- 47 components new TimerMillic() as Timerl;
@ BlinkC.nc 42 components new TimerMillic() as TimerZz; > & BlinkC
go demo h 49 b & LedsC
50 : 4 L
E 4 b
|5 Makefile is1 BlinkC -> Mainc.Boot; i @ Timer0 (TimerMill
README. txt =52 B b & Timerl (TimerMilli —
|2 Makefile ’ O : | [«]»] b & Timer2 (TimerMill
b &= MyNewProject Editor | Component graph Preprocessor ~ < Connections
[l Problems 2 2 Ccnsnle] @Tasks\ =i P = BlinkC = MamC‘E@
7 errors, 17 warnings, 24 others (4 4]
Description |Hesuurce [Make Options Xl\ =7
b @ Errors (7 items) \E
b & Warnings (17 items) Ciball
b i Infos (24 items) P W Brogdcest
b = MyBlink
b = MyNewProject
[R0 3] [€R €103
L\’
‘ e |

Final Remarks

e Code skeletons for both applications are provided on the lab PC. All
software required during the lab is already pre-installed.

e The lab work place is in the ETL building (ETL F29).
Keys must be fetched in our office ETZ G64.1 when your lab slot starts.

» Register for your lab time slot on the course website

The End

e Thanks to Pascal von Rickenbach & Nicolas Burri for many of the slides

